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Abstract. We determine the region in front of a walking person that
is not blocked by obstacles. This is an important task when trying to
assist visually impaired people or navigate autonomous robots in urban
environments. We use conditional random fields to learn how to interpret
texture and depth information for their accessibility. We demonstrate the
effectiveness of the proposed approach on a novel dataset, which consists
of urban outdoor and indoor scenes that were recorded with a handheld
stereo camera.

1 Introduction

Being able to savely navigate and explore areas in a city is an essential aspect of
our everyday lifes. Accordingly, it is also an essential ability that autonomous,
humanoid robots will have to master, if we want them to seemlessly operate in
our part of the world, outside of controlled factory conditions. Similarly, safe
navigation and exploration in urban areas is also an essential task when aiming
toward increasing the autonomy, mobility, and overall life quality of visually
impaired people. While location and directionality information provided by the
global positioning system (GPS) can guide people and robots toward points of
interest, GPS is blind with respect to the user’s immediate surroundings. Thus,
complementary systems are required to recognize hindrances and warn about
potential dangers along the desired path.

Many systems have been developed and can be used to detect obstacles,
including the classical white cane. Most technical solutions are often targeted
towards different applications, imposing specialized constraints. Furthermore, they
often rely on specialized, costly hardware such as sonar, radar, or light detection
and ranging (LIDAR). This hardware is incapable of perceiving information
provided by, e.g., traffic lights, signs, and lane markings. Furthermore, compared
to touch sensors for robots or the classical white cane for blind people, an
approach based on computer vision makes it possible to smoothly go around
obstacles, because obstacles can visually be perceived from a greater distance.

In this paper, we use conditional random fields (CRFs) to determine the
obstacle-free area in front of a walking person. Here, in contrast to many existing
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(a) Sidewalk (b) Corridor (c) Flower-box (d) Passage (e) Ridge

(f) Sidewalk L. (g) Railing (h) Car Park (i) Alley (j) Ladder

Fig. 1. Exemplary binary classification results (CRF with depth and visual information)
overlayed over the original image illustrating the true positives (green), true negatives
(blue), false positives (red), and false negatives (yellow). This graphic is best seen in
color.

approaches that model and try to detect obstacle classes, we address the dual
problem and determine the parts in an image that are not blocked by obstacles.
This way, we do not solely rely on the extremely varying characteristics of
obstacles. Instead, assuming that the user is constantly guided by our system
(see, e.g., [1]) and thus the direct area in front of him is free of obstacles1, we can
leverage the ground texture and depth information directly in front of him or her.
To this end, we previously introduced a heuristic that uses depth maps to predict
the ground surface normals and used this information as a rough predictor [2]. In
this contribution, we investigate three CRF configurations that rely on different
features to predict the obstacle-free areas: First, we train a CRF without depth
information, which achieves a surprisingly good performance and is suitable for
application in, e.g., modern smart phones. Second, we train a CRF that solely
relies on specific depth information, which is independent of obstacle texture
and also can use different sensors (e.g., Kinect’s depth maps). Third, we train a
CRF that leverages depth and visual information (see Fig. 1), which achieves the
best results in our evaluation. We recorded and annotated a novel, challenging
dataset to evaluate our approach. The dataset comprises of 20 videos that were
recorded with a handheld stereo camera setup and cover different urban scenes
under realistic ego-motion, lighting conditions, and scene complexity.

2 Related Work

The traditional white cane has a long history as a navigational device for visually
impaired, especially blind, people. Many attempts have been made to create a
digital enhancement, e.g., the GuideCane [3]. Martinez and Ruiz [4] complement

1 Please consider that it is not our intention to replace the white cane, but instead we
want to complement it. Thus, the user can recover from failures by relying on the
classical walking stick.
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the white cane and warn of aerial obstacles, such as low hanging branches. A
more radical approach, that tries to replace the walking stick, uses sonar sensors
and small vibrotactile units to signal feedback to the user [5]. To provide a
navigational context inside buildings, Coughlan and Maguchi [6] use colored
markers placed throughout a building. These are then detected and processed by
a mobile phone application. The need for specific markers is removed by Chen et
al. [7] through an Inertial Measurement Unit (IMU) and an a priori known map
of the building. Obstacle detection is usually constrained to a small subset, e.g.,
matching upper body templates of pedestrians [8] or staircases [9]. These can be
based on saliency [10], hough transformation [11] or optical flow [12]. As a dual
problem, ground plane detection can be achieved through plane fitting [13] using
RANSAC approaches. The authors model a relationship between the ground
plane disparity and image pixel coordinates. Stereo camera rigs mounted on
wheeled vehicles [14, 15] result in a steady camera movement and support a
probabilistic model. The dependency of person detection location and size is used
to generate a ground plane estimation.

Segmentation is another technique to detect the ground plane and was pro-
posed by Lombardi [16]. In recent years, conditional random fields have achieved
state-of-the-art performance for several segmentation tasks such as, e.g., semantic
(scene) segmentation (e.g., [17–19]). Semantic segmentation describes the task
of labeling each pixel of an image with a semantic category (e.g., “sky”, “car”,
“street”). Accordingly, we chose conditional random fields as starting point to
address our task. However, in contrast to the existing work, we are not interested
in semantic object classes or types, but instead are interested in answering the
question whether or not the region of an image accessible to a walking person?
This naturally is related to road detection (e.g., [20, 21, 15]). However, detecting
the walkable area in front of persons differs substantially from road detection for
cars: First, we have to deal with a large amount of ego-motion that is charac-
terized by the fact that cameras carried by a person are subject to considerably
more degrees-of-freedom compared to cameras mounted on cars. Second, humans
do not just follow roads, they sharply change direction, often even want to cross
roads (and not just on zebra crossings), and they want to walk indoors as well as
outdoors. Third, roads made for cars are much wider, straighter, and smoother
than the small pathes between obstacles that are common in urban scenarios,
see Fig. 3.

3 Open Area Detection

3.1 Depth-based Surface Angle Heuristic

The depth-based surface angle heuristic builds on work done by Koester et al. [2]
that determines the accessible section in front of a walking person. Using epipolar
geometry, we calculate the disparity of a point and therefore its distance from the
camera. Doing so for every image point, we obtain a depth map ∆ = {(xi, yi, δi)},
which allows us to calculate gradient ∇ for small image regions. After convolution
of the image in both horizontal and vertical directions, we compute the local
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gradient direction for each region. This results in map Φ, which consists of
processed image regions and their corresponding gradient directions.

Within Φ, we calculate the accessible section by processing it in vertical bands.
Such a band is a column of Φ, i.e., a vertical grouping of gradient regions. Starting
with the band’s bottommost block, we collect upwards all blocks that match
our criteria of an aligned region. Correctly aligned regions are all blocks whose
calculated angles deviate less than a certain threshold from a perfectly upright
plane surface normal. Upright for this work is defined as being tilted upwards in
the camera image, which prevents the algorithm from working on images where
the camera is tilted above the used threshold. For our experiments this was not
a problem, as the stereo camera system was mounted on a handheld carrier that
was rarely tilted sideways more than 15 degrees, but to address this problem, one
could simply use an Inertial Measurement Unit in combination with the cameras
or estimate the dominant ground plane. When a block does not fit that criteria,
the collection process stops and advances to the next vertical band. We repeat
this process until the entire map has been processed, but rely on a geometric
constraint in this process. When recording a real world scenario with a camera
system from a persons point of view, the accessible section is usually connected
to the bottom image border. This constraint allows us to focus on the accessible
section that is directly in front of a person and not obstructed by any obstacles.

Due to the simplicity of the gradient calculation, the resulting algorithm
works in realtime on a fairly recent computer.

3.2 Conditional Random Field

Structure, Learning, and Prediction In general, a CRF models the condi-
tional probabilities of x (here, is it a walkable area?), given the observation y
(i.e., features), i.e.

p(x|y) =
1

Z(y)

∏

c∈C

ψ(xc, y)
∏

i∈V

ψ(xi, y) , (1)

where C is the set of cliques in the CRF’s graph and i represent individual nodes.
Here, ψ indicates that the value for a particular configuration xc depends on the
input y.

Naturally, our problem is a binary segmentation task, since the location
depicted by a pixel can either be blocked by an obstacle or not, i.e. xi can
either be “blocked” or “non-blocked”. We use a pairwise, 4-connected grid CRF
structure. We linearly parametrize the CRF parameter vector Θ in unary node
u(y, i) (i.e., information at an image location) and edge features v(y, i, j) (e.g.,
relating neighbored image locations). Here, it is important to consider that the
cliques in a 4-connected, grid-structured graph are the sets of connected nodes,
which are represented by the edges. Thus, we fit two matrices F and G such that

Θ(xi) = Fu(y, i) (2)

Θ(xi, xj) = Gv(y, i, j) (3)
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Here, y is the observed image and Θ(xi) represents the parameter values for all
values of xi. Similarly, Θ(xi, xj) represents the parameter values for all xi, xj .
Then, we can calculate

p(x;Θ) = exp





∑

i

Θ(xi) +
∑

j

Θ(xi, xj)−A(Θ)



 , (4)

where A(Θ) is the log-partition function that ensures normalization.
We use tree-reweighted belief propagation (TRW) to perform approximate

marginal inference, see [22]. TRW addresses the problem that it is computationally
intractable to compute the log-partition function A(Θ) exactly and approximates
A(Θ) with

Â(Θ) = max
µ∈L

Θ · µ+ Ĥ(µ) , (5)

where Ĥ is TRW’s entropy approximation [22]. Here, L denotes the valid set of
marginal vectors

L = {µ :
∑

xc\i

µ(xc) = µ(xi) ∧
∑

xi

µ(xi) = 1} , (6)

where µ describes a mean vector, which equals a gradient of the log-partition
function. Then, the approximate marginals µ̂ are the maximizing vector

µ̂ = argmax
µ∈L

Θ · µ+ Ĥ(µ) . (7)

This can be approached iteratively until convergence or a maximum number of
updates [23].

To train the CRF, we rely on the clique loss function, see [22],

L(Θ, x) = −
∑

c

log µ̂(xc;Θ) . (8)

Here, µ̂ indicates that the loss is implicitly defined with respect to marginal pre-
dictions – again, in our implementation these are determined by tree-reweighted
belief propagation – and not the true marginals. This loss can be interpreted as
empirical risk minimization of the mean Kullback-Leibler divergence of the true
clique marginals to the predicted ones.

Features As unary depth-based features, we use the surface angle map Φ

as presented in Sec. 3.1 and additionally the disparity map. As unary image-
based features, we include the following information at each CRF grid point:
First, we include each pixel’s normalized horizontal and vertical image position
in the feature vector. Second, we directly use the pixel’s intensity value after
scaling the image to the CRF’s grid size. We expand the position and intensity
information using sinusoidal expansion as described by Konidaris et al. [24, 23].
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(a) (b) (c) (d) (e) (f)

Fig. 2. Exemplary key frames and binary masks of videos (a) Sidewalk, (b) Corridor,
(c) Flower-box, (d) Passage, (e) Ridge, and (f) Narrow.

Third, we append the histograms of oriented gradients (HoG) to encode the
texture information.

As CRF edge features, we use a simple 1-constant and 10 thresholds to encode
the difference of neighboring pixels. Then, we multiply the existing features by
an indicator function for each edge type (i.e., vertical and horizontal), effectively
doubling the number of features and encoding conjunctions of features and edge
type. This way, we parametrize vertical and horizontal edges separately.

4 Experimental Evaluation

4.1 Dataset

We recorded a dataset to evaluate the detection of all image regions that are not
blocked by obstacles [2]. This was necessary, because existing related datasets
have been recorded for other use cases and mostly focus either on road scenes or
people detection inside pedestrian areas (see Sec. 2). Since we target wearable
sensor platforms that can assist visually impaired persons, we recorded the dataset
on a handheld mobile platform carried by a pedestrian. Consequently, our dataset
contains – among other challenges – realistic (camera) ego-motion on all axes.
We recorded 20 videos of varying length that show common urban scenes such as,
e.g., walkways and sidewalks with static obstacles (e.g. parked cars, bicycles, and
street poles) and moving obstacles (e.g., cyclists and pedestrians). Some example
images illustrating the dataset are shown in Fig. 2.

The videos were recorded with a stereo setup consisting of two Point Grey

Grasshopper 2 cameras, which were mounted onto a small metal carrier, axes
in parallel, at a fixed distance of about 6cm with respect to the lenses’ centers
and the used lenses provide a field of view of 82 by 67 degrees. The metal carrier
was manually held at breast height and the cameras were pointed towards the
ground in front of the carrying person. Furthermore, the cameras were configured
to synchronize time as well as the adaptation of gain and exposure. All videos
were recorded in 8-bit monochrome mode at a resolution of 1024× 768 pixels at
15 frames per second.

Overall, the dataset contains 7789 frames, out of which we labeled every fifth
frame (i.e., 3 fps). We did not label the first 30 frames of each video in order to
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allow for proper gain and exposure synchronization. We labeled the obstacle-free
section as a polygon, where we imposed the constraint that a valid region must
connect to the bottom frame boundary to be reachable from the current position,
otherwise obstacles could obstruct it. Examples of binary masks created from
labeled frames can be seen in figure 2.

4.2 Measures

We use the human ground truth annotation of the walkable area in each labeled
frame, see Sec. 4.1, to evaluate our approach with respect to two performance
measures: First, we use the pixel-wise binary classification error (i.e., 1−accuracy)
to directly evaluate the goodness of the binary classification. In case of the
depth-based heuristic, we calculate the best threshold over all training images.
Second, we use the area under the receiver-operator characteristic curve (ROC
AUC) to investigate the influence of the decision thresholds on the classification
performance. This way, we have a measure of how well behaved the non-binary
(probabilistic) prediction maps are, i.e., how far away from the truth are the
predicted values typically?

To validate the statistical significance of our results, we perform paired t-tests
to ensure that the compared algorithms are in fact better or worse. Here, the
results of the two algorithms in question are paired for each video. We reject
hypotheses at significance level α = 0.05.

4.3 Algorithm Parameters

We use Geiger et al.’s efficient large-scale stereo matching algorithm [25] to
calculate the disparity and depth maps from the stereo image pairs. For the
surface angle calculation (Sec. 3.1), we use a kernel size of 32×32 pixels, tiling the
original 1024× 768 pixels image into 32× 24 blocks. To heuristically determine
the section that is not blocked by obstacles, we consider values that deviate less
than 22.5◦ from an optimal perpendicular angle. We train the CRFs using a
grid/feature map size of 64× 48 pixels.

4.4 Results

As is apparent in Tab. 4, all CRFs outperform the heuristic baseline method on
18 out of the 20 videos in terms of prediction error. Averaged over all videos, the
depth-based baseline method achieves a pixel-wise error of 0.209 and a ROC AUC
of 0.852. If we train the CRF using the depth and surface angle maps exclusively,
then we achieve an error of 0.126 and a ROC AUC of 0.939. Using a pairwise t-test
to compare the accuracies achieved on the videos, we can reject the hypotheses
of equal mean (pE = 0.022) and that the heuristic approach might be better than
the CRF (pI = 0.011). In contrast, if we exclusively rely on image features, then
we achieve an error of 0.209 and a ROC AUC of 0.937, which is better than the
heuristic approach (we can reject inferiority with p = 0.030, but we are unable
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(a) Corridor (b) Flower-box (c) Passage (d) Car Park (e) Ridge

Fig. 3. Exemplary binary classifications for different CRF configurations. Top-to-bottom:
No depth, depth only, and visual and depth. The binary classification is overlaid over
the original image to illustrate the true positives (green), true negatives (blue), false
positives (red), and false negatives (yellow). This graphic is best seen in color.

to reject equality) and very similar but slightly inferior in performance to the
depth only approach (we are not able to reject any hypothesis). Finally, if we
train a CRF with both depth and visual information, it achieves a pixelwise
prediction error of 0.111 and a ROC AUC of 0.949. This approach provides
the best performance on 16 out of the 20 videos in terms of error minimization
and 14 out of 20 in terms of best ROC AUC performance. Confirmed by our
statistical tests, we can safely assume that this algorithm in fact provides a better
performance than the heuristic baseline (H0: Inferior? Reject at pI = 0.006; H0:
Equal? Reject at pE = 0.012) and the CRF without depth information (trivially
visible, because the results on all videos are better). But, contradicting our
expectation given these numbers, we are unable to reject the possibility that
the depth only approach is equally good or even better. Why is that? This is
caused by two video sequences, namely “Corridor” and “Fence” for which the
depth-only results stand out of the other results by being drastically better. If
we exclude both video sequences, we can safely reject that the performance of
the depth only CRF is equal or better (pE = 0 and pI = 0, respectively) than the
performance of the CRF with depth and visual information.

The “Corridor” is an interesting case, because not just the depth-based CRF
but even the depth-based heuristic outperform the CRF that uses depth and
visual information, see Tab. 4. However, this is most likely explained by the
absence of a second indoor video that could provide suitable visual training data
in our leave-one-video-out evaluation. Furthermore, it is important to note that
the walls and floor in the video are nearly textureless and consequently hardly
suited for HoG-like features. The case is slightly different for the “Fence” sequence,
for which it is interesting to have a look at the ROC AUC. The ROC AUC of the
full – i.e., visual and depth features – CRF is substantially higher (0.933 > 0.855)
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Fig. 4. Pixel-wise binary classification error and area under the receiver operator
characteristic curve achieved in a leave-one-video-out cross-validation procedure. The
algorithms are: depth-based surface angle heuristic (D-based), a CRF that only uses
depth features (D only), a CRF that only uses visual features (no D), and a CRF that
uses depth and visual features (full). The best result for each video is marked bold.
Results where D-based outperforms full are underlined.

↓ Pixel-wise Error (1−Accuracy) ↑ ROC AUC
heuristic CRF heuristic CRF

Sequence D-based D only no D full D-based D only no D full

Alley 0.099 0.088 0.088 0.066 0.928 0.971 0.972 0.979

Alley L. 0.138 0.124 0.073 0.054 0.892 0.958 0.979 0.985

Bicycle 0.324 0.141 0.092 0.092 0.753 0.906 0.946 0.953

Car 0.149 0.124 0.090 0.065 0.850 0.944 0.935 0.973

Corridor 0.204 0.086 0.365 0.316 0.819 0.972 0.702 0.753
Fence 0.185 0.126 0.284 0.260 0.855 0.936 0.914 0.933
Flower-box 0.276 0.169 0.160 0.158 0.783 0.897 0.964 0.966

Hedge 0.186 0.202 0.154 0.105 0.836 0.866 0.893 0.917

Ladder 0.132 0.176 0.155 0.112 0.836 0.920 0.937 0.913
Narrow 0.071 0.104 0.106 0.058 0.958 0.983 0.982 0.993

Pan 0.350 0.127 0.084 0.063 0.759 0.940 0.987 0.981
Passage 0.195 0.125 0.187 0.130 0.850 0.941 0.942 0.964

Railing 0.304 0.189 0.234 0.203 0.760 0.851 0.835 0.835
Ramp 0.269 0.163 0.164 0.129 0.803 0.916 0.970 0.970

Ridge 0.801 0.163 0.258 0.140 0.854 0.885 0.910 0.960

Sidewalk 0.087 0.056 0.084 0.046 0.929 0.969 0.945 0.968
Sidewalk 2 0.096 0.073 0.057 0.043 0.947 0.978 0.978 0.982

Sidewalk L. 0.088 0.110 0.087 0.070 0.889 0.979 0.981 0.986

Sign 0.146 0.099 0.079 0.064 0.890 0.978 0.986 0.987

Street 0.083 0.075 0.059 0.044 0.940 0.986 0.988 0.991

Average 0.209 0.126 0.143 0.111 0.852 0.939 0.937 0.949
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than the ROC AUC achieved by the depth-based heuristic and only marginally
worse compared to the depth-only CRF (0.936). This stands in contrast to
the considerably higher pixel-wise error (0.260 > 0.185 and 0.260 > 0.126).
Accordingly, it is most likely that the actual error is caused by the final decision
made by the CRF and, considering from the performance of the CRF without
depth-features, might arise from the present visual features.

Overall, it is easy to conclude that depth is an important and reliable in-
formation about the accessibility of a ground section ahead. This makes sense,
because while the texture of obstacles may vary substantially their main property
of physically blocking a certain area is well represented in depth maps. However,
if we again closely examine the results, we can see that the visual-only CRF
achieves an equal or lower error compared to the depth-based CRF on 12 of the
20 sequences. Thus, it is possible to achieve an accurate prediction even with a
single, monocular camera, if we have sufficient and appropriate training data.
However, in many cases depth information seems more reliable and especially
does not only depend on texture that can vary substantially for obstacles and
scenes in general.

Although the CRF that uses depth and visual features provides the overall
best performance, all algorithms have their respective use cases: First, CRFs
that do not rely on depth features can use monocular cameras, which nowadays
can be found in nearly all off-the-shelf mobile phones. Second, the lightweight
complexity of the depth-based heuristic2 stands in contrast to the roughly 2 fps
our CRF-based implementations that are not real-time capable yet. Third, the
depth-based heuristic and depth-based CRF seem to perform well in the absence
of scene specific, targeted training data. Thus, they could serve as fallback in
scenes or situations for which the CRFs that include visual information have not
been trained.

5 Conclusion

We presented how we determine obstacle-free areas in front of a walking person or
(humanoid) robot. In contrast to prior art, we focus on detecting the obstacle-free
areas instead of detecting potential obstacles directly, thus addressing the dual
problem to classical obstacle detection. Our evaluation dataset consists of 20
videos depicting urban scenes that we recorded using a handheld stereo camera rig.
It contains realistic amounts of lighting variations, ego-motion, and scene variety
in urban scenarios. Given the dataset, we can train and investigate different
conditional random fields for varying sensor configurations, i.e. depth information
only, stereo video recordings, and monocular video recordings. To efficiently work
with depth information, we use a heuristic that predicts flat ground surfaces in
front of the user that typically represent sidewalks, streets, or floors in urban
environments. This algorithm also serves as a depth-only, non-CRF baseline
algorithm. In summary, we are able to achieve a pixel-wise prediction accuracy

2 We exclude the time for the depth map calculation, which could be replaced by
specialized sensors, e.g., Kinect.
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of 0.874, 0.857, and 0.889 for depth-only, monocular images, and stereo images,
respectively.

As part of our future work, we plan to investigate how haptic or auditory
output modalities can be used to communicate the information to visually
impaired users. For this purpose, we also plan to improve the computational
efficiency to achieve a high system responsiveness that is essential for auditory or
haptic user interfaces. Furthermore, we want to integrate self-localization and
tracking to smoothly steer a blind person around obstacles.
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