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ABSTRACT

We address the problem of determining the accessible section
in front of a walking person. In our definition, the accessible
section is the spatial region that is not blocked by obstacles.
For this purpose, we use gradients to calculate surface normals
on the depth map and subsequently determine the accessible
section using these surface normals. We demonstrate the ef-
fectiveness of the proposed approach on a novel, challenging
dataset. The dataset consists of urban outdoor and indoor
scenes that were recorded with a handheld stereo camera.

Index Terms— Visually Impaired, Computer Vision, Ob-
stacle Detection, Guidance, Navigation

1. INTRODUCTION

Assisting visually impaired people to safely navigate and ex-
plore urban areas is an essential task when aiming toward
increasing their autonomy, mobility, and overall life quality.
While location and directionality information provided by the
global positioning system (GPS) can guide users toward points
of interest, GPS is blind with respect to the user’s immediate
surroundings. Consequently, we require complementary sys-
tems to perceive the user’s surroundings and inform him about
potential obstacles and dangers in his path.

Many systems have been developed and can be used to
detect obstacles, including the classical white cane. Most tech-
nical solutions are often targeted toward different applications,
imposing specialized constraints. Furthermore, they often rely
on specialized, costly hardware such as sonar, radar, or light
detection and ranging (LIDAR). This hardware is incapable of
perceiving information provided by, e.g., traffic lights, signs,
and lane markings. In contrast, the nowadays omnipresent
cameras are able to perceive such information, they are ex-
tremely cheap, and the field of computer vision has made
tremendous progress in the last decade.

In this paper, we present a computer vision approach to
detect the accessible section in front of the user. Compared
to the classical white cane, this has the advantage that we can
guide the user more smoothly around obstacles, because we

perceive these at a greater distance. In contrast to many exist-
ing approaches that model and try to detect obstacle classes,
we investigate the dual problem of determining the parts in
an image that are not blocked by obstacles. To this end, we
use depth information to determine the ground plane and then
determine the accessible section under the assumption that the
area directly in front of the user is accessible. This is a fea-
sible assumption, because since the user is constantly guided
around obstacles, there should be no obstacles directly in front.
Although being computationally lightweight and simple, our
approach provides a consistently good performance, which we
demonstrate on a novel dataset. The dataset comprises of 20
videos that cover different urban scenes and contain realistic
ego-motion, lighting conditions, and scene complexity.

2. RELATED WORK

Many navigational aids for visually impaired people have al-
ready been created. The GuideCane [1] replaces the traditional
cane with a digitally enhanced counterpart. While it is sim-
ilar to the regular cane, it has a two wheeled base and an
array of distance sensors mounted to it. Instead of performing
a sweeping motion, the user simply pushes the GuideCane
along. Detected obstacles are evaded by breaking one of its
wheels, thus initiating a circular motion to avoid the obsta-
cle. Another method uses sonar sensors and haptic feedback
through small vibration units sewn into the wearer’s garment
and provides an unobtrusive and almost invisible way to signal
feedback to the user [2].

Other systems rely on the existence of specific markers
or real world characteristics. Coughlan and Maguchi [3] use
colored markers installed throughout a building. These are
detected by a mobile phone application to help location- and
way-finding inside buildings. This improves location aware
systems where GPS is not available. Markers must be pro-
vided, the layout of a site must be known and moving obstacles,
such as people, are not considered. Chen et al. [4] alleviate
the need of such markers by including an Inertial Measure-
ment Unit (IMU). It is used to sample the user’s kinematic
data and therefore its ego-motion. By combining information



about walking direction, step length and frequency, a position
estimation is created on an a priori known map.

Different approaches focus on specific subsets of obsta-
cles. Martinez and Ruiz [5] warn of aerial obstacles only,
e.g. branches or low hanging street signs. Their work com-
plements the traditional walking stick, since such obstacles
are not sensed because of the way the walking stick is used.
Lee et al. [6] use saliency maps and stereo vision to segment
obstacles that have a high saliency. This is especially prob-
lematic for objects that have a similar color and structure as
their surroundings, e.g. curbs. Also, the authors use a Time

Of Flight camera, as well as an RGB-D camera in [7], which
returns depth information and thus compensates for the costly
depth calculation.

General ground plane and obstacle detection can be
achieved through plane fitting, as has been done by Se and
Brady [8]. A linear relationship between image pixel coordi-
nates and ground plane disparity is used. Through Random
Sample Consensus (RANSAC) [9] and a Sobel edge detector
the ground plane as well as the camera pose are estimated.
Staircase detection is performed by Hoon et al. [10]. They
rely on a trained classifier and use RANSAC to estimate the
ground plane and remove false detections. Segmentation is
another technique to detect the ground plane and is used by
Lombardi [11].

Obstacle detection usually focuses on a subset of all pos-
sible obstacles only. Labyrade [12] and Braillon [13] use
varying techniques such as the Hough Transformation [14] as
well as optical flow [15] to detect prominent or salient objects.

Many works deal with pedestrian detection in urban set-
tings, some even on a wearable platform [16], where depth
templates of upper bodies are learned and matched. A similar
system uses stereo camera rigs mounted onto wheeled vehi-
cles [17, 18]. This results in steady camera movements with
only very few pitch and roll changes. A probabilistic approach
is then used to model the dependency of person detection,
size and location, which then creates a common ground plane
estimation.

3. SYSTEM DESIGN

Our accessible section detection system is based on a frame-
work aimed toward collaborative development of assistive
systems for visually impaired people. We will describe the
framework further in chapter 4.1. We have encapsulated the
proposed accessible section detection system inside a mod-
ule of our framework, to allow for further integration and
reuse. An input module delivers stereo images taken from
pre-recorded sessions, e.g., the dataset, or live camera input
from a calibrated stereo camera. Using a stereo reconstruction
library [19], we calculate a disparity map. A Kinect can also be
used for input and allows us to achieve real time performance.
Using our disparity map, we compute the accessible section
by estimating surface directions of real world scene patches.

4. ACCESSIBLE SECTION DETECTION

4.1. The Blind And Visually Impaired Support System

We created a framework, the Blind and Visually impaired

Support system (BVS), to simplify and accelerate collaborative
research efforts toward assistive systems for visually impaired
people. Our framework is inspired by the Robotic Operating
System (ROS) [20]. We designed it to be fast to learn and easy
to use. Furthermore, we integrated advanced functionalities
into the framework, such as multi-threading, module pooling
and module hot swapping. The framework itself will be made
open source, as well as the base modules that help with tasks
like image and video acquisition and camera calibration.

4.1.1. Modularity and Extensibility

Our framework provides a modular abstraction. It allows us
to separate functionalities while keeping the ability to freely
combine them. To that regard, each framework module con-
sists of a core functionality. This functionality represents its
main contribution to the overall system while the module itself
deals with more complicated procedures, e.g., initialization
and shutdown of hardware components. We can thus combine
functionalities of several modules without having to deal with
their side effects. A modular approach furthermore allows
us an easy extensibility of created systems. We can include
missing functionalities by creating them or reusing them from
other projects. Our framework approximates the running costs
of a specifically created application by using a pure functional
approach and a flat calling hierarchy, but keeps the benefit of
being dynamically changeable in its execution details and their
order, even at runtime.

4.1.2. Public Interfaces

To simplify the frameworks usage, we created various inter-
faces. These are aimed at the development of framework
clients and especially modules. We chose to allow the devel-
opment of framework clients to enable a broad usage scenario
and framework portability, e.g., headless clients on servers
or embedded systems, graphical user interfaces or clients for
mobile operating systems. To promote a consistent module
interface, we include a tool to create a module template. This
template allows for easy and fast creation of library wrappers
and encapsulation of functionalities. Our interfaces allow mod-
ules to connect to each other and make use of our provided
configuration, information and logging subsystems.

4.1.3. Base Modules

Our framework itself contains no specific low level driver com-
ponents or dependencies on other libraries. We provide such
functionality through encapsulation inside modules, which we
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Fig. 1: Key frames, binary masks and accessible section predictions of videos (a) Sidewalk, (b) Corridor, (c) Flower-box, (d)
Passage, (e) Ridge, and (f) Narrow.

release in combination with the framework. To support devel-
opment toward assistive systems using computer vision, we
created modules to capture, record and playback information
from cameras, images and videos, calibrate stereo cameras,
as well as reconstruct disparity maps. These base modules
also serve an exemplary purpose for the creation of further
modules.

4.2. Gradient Calculation

The local orientation of a real world surface segment correlates
with the gradient of its regional representation in our dispar-
ity image. It is geometrically proven that real world points
with a smaller distance toward the camera base have a greater
disparity than points further away [21]. Thus a planar surface
with a normal directly aimed at the projection center of the
camera shows no gradient in the disparity representation, as its
surface points are all approximately at the same distance. On
the contrary, a tilted surface shows a gradient, as the distance
of its surface points vary and therefore the calculated disparity
varies. We calculate the gradient of a region in the disparity
map as

∇f =
δf

δx
x̂+

δf

δy
ŷ , (1)

which includes information about strength and direction. We
then use a discrete version of the ∇ operator, a filter kernel on
a small image region. The ∇ operator is separated into ∇X
and ∇Y , horizontal and vertical fraction, which we calculate
as

∇X =





−1 0 1
−1 0 1
−1 0 1



 f(I) ,∇Y =





−1 −1 −1
0 0 0
1 1 1



 f(I) ,

(2)

where f(I) represent a disparity map region of appropriate
size.

Different kernel sizes can detect differently sized surfaces.
We chose a kernel size of 32 × 32 pixels in our system. To
decrease the computational costs, we do not apply the kernel
to every pixel, but only do so block wise. We compute only
a single kernel size, but further scaling of the kernel size is
necessary to improve the detection, especially on the accessible
section’s edges, but also to detect, e.g., stair cases.

Using ∇X and ∇Y , we calculate a surface region’s orien-
tation as

θ = arctan
∇Y

∇X
. (3)

The calculation considers only two dimensions, but is suffi-
cient for our case, as only surface regions being completely
or almost upright are of interest to us. These correspond to a
gradient value θ of around π/2, or 90◦.

4.3. Accessible Section

Recording a real world scenario with a camera system imposes
a few geometric constraints on the retrieved images. The
accessible section is usually connected to the bottom image
border, guaranteed by the fact that the cameras record a persons
point of view. Furthermore, the camera is usually upright, with
a varying degree of rotational deviation. This has the result,
that the accessible section is also usually upright, as it mostly
consists of the ground plane in front of a person. By adhering
to these constraints, we can determine the accessible section.

We process the calculated surface angles from the image’s
bottom edge to its top edge. Starting on the image bottom, we
collect all regions whose calculated angle deviates less than
π/8 from an optimal upright angle of π/2. This detection step
returns the directly accessible section, the part of the ground



plane that can be reached without having to navigate around
or behind obstacles, from the current point of view.

5. EXPERIMENTAL EVALUATION

5.1. Dataset

We created a dataset to evaluate our ground detection system
and will make it publicly available alongside the software
framework. Existing datasets regarding any form of ground
detection usually focus either on road scenes or people detec-
tion inside pedestrian areas, as discussed in section 2. Our
dataset focuses on the observation that existing systems do not
handle realistic ego-motion well, since they were usually not
built toward a wearable platform.

Our dataset consists of 20 videos with varying length.
These cover common urban scenes, e.g., walkways and side-
walks; static obstacles, e.g., parked cars, bicycles and street
poles; as well as moving obstacles, e.g., cyclists and pedestri-
ans. We also included a few rare or uncommon cases, such as
a narrow ridge and a ladder like sculpture. We present some
example frames of the videos contained in the dataset figure 1.

5.1.1. Acquisition

We recorded the videos using a handheld stereo camera rig and
a laptop. The cameras we used were Point Grey Grasshopper

2 cameras, which we mounted onto a metal carrier at a fixed
distance and angle. We then took several precautionary mea-
sures to improve the stereo reconstruction process. First, the
cameras optical axes were aligned to be parallel. Furthermore,
daisy-chaining allows for a built-in synchronization and adap-
tation of gain and exposure between the cameras. We obtained
the calibration of the stereo camera system before and after
the recordings to mitigate unintended changes in the stereo
base due to external forces and detected no significant changes.
Videos were recorded at a resolution of 1024× 768 pixels and
15 frames per second in an 8-bit grey mode.

Much care was taken to record the videos under realis-
tic settings. They include strongly lit and shadowed regions,
lens flares and realistic ego-motion on all axes, as they were
recorded on a handheld mobile platform carried by a pedes-
trian.

5.1.2. Ground truth

Overall, the dataset contains 7789 frames. Of these, we labeled
every fifth frame, which amounts to three labeled frames per
second. To allow the cameras to properly synchronize gain
and exposure, we did not include the first 30 frames of each
video. Then two persons marked the desired accessible section
with a polygon, labeling different videos each.

We imposed fixed constraints on the labeling process. A
valid accessible section must connect to the bottom frame
boundary to be reachable from the current position, otherwise

obstacles could obstruct it. We show some examples of binary
masks created from labeled frames in figure 1.

5.2. Measures

We evaluate the performance of the created ground detection
system by calculating the Receiver Operating Characteris-

tic (ROC), the Precision-Recall (PR) as well as aggregated
measures in form of the Area Under the Curve (AUC) and
Fβ scores. The Fβ score combines precision and recall into a
single value, their individual weights determined by β,

Fβ = (1 + β2) ·
precision · recall

(β2 · precision) + recall
. (4)

When evenly weighted, the F-score becomes the balanced
F-measure, also known as the F1 score. Additionally, in the
following we will use F0.5, as it places a higher importance on
precision than recall. A high precision seems more relevant
than a high recall in this application, since it correlates with a
higher percentage of correct results with fewer false positives.
This is especially important when dealing with a system that
directly affects a human being, as it seems preferable to detect
all obstacles rather than all of the accessible section.

Finally, we calculate the overall pixel-wise accuracy for
each video as

accuracy =
#TP +#TN

#TP+#TN+#FP +#FN
, (5)

with true-positives (TP), true-negatives (TN), false-positives
(FP) and false-negatives (FN).

5.3. Results

Our created accessible section detection achieves varying re-
sults depending on circumstances like the amount of observ-
able ground plane or its texture. In these and similar scenarios,
where there is a great variability in the texture of the observed
scene, the classification achieves good results. We present an
overview of the achieved classification rates for all videos in
figure 2. The AUC for ROC and PR are given as well as the
F-scores. The F0.5 and F1 scores show that the algorithm has
a high reliability. Especially for the Alley, Alley Leveled, Nar-

row, Sidewalk, Sidewalk 2, Sidewalk Leveled and Street videos
we achieve a very high discrimination ratio, almost always
above 90%. These videos have a fairly large stretch of acces-
sible section with obstacles located on both sides in common
as well as only very few obstructions separating the ground
section. We also achieve good results on the Car, Corridor,
Fence, Hedge, Ladder, Passage and Sign videos. Here, a vari-
able amount of directly accessible ground section is available
and it is often separated into several parts. Classification rates
are still above 80% and support the initial assumption that
the gradient classifier could deliver good results even under
difficult circumstances. The Bicycle, Flower-box, Pan, Railing



Fig. 2: Per dataset video results: the AUC for the ROC and PR

curves, Fβ for β = 0.5 and β = 1 as well as per video
accuracy (Acc.). x̄ shows the average score calculated
over all video scores.

Name
∫

ROC
∫

PR F0.5 F1 Acc.

Alley 0.928 0.882 0.937 0.916 0.901

Alley L. 0.892 0.856 0.941 0.911 0.862

Bicycle 0.753 0.629 0.843 0.869 0.676

Car 0.850 0.679 0.763 0.739 0.851

Corridor 0.819 0.665 0.816 0.750 0.796

Fence 0.855 0.750 0.878 0.834 0.815

Flower-box 0.783 0.607 0.838 0.789 0.724

Hedge 0.836 0.827 0.882 0.872 0.814

Ladder 0.836 0.629 0.757 0.736 0.868

Narrow 0.958 0.924 0.922 0.928 0.929

Pan 0.759 0.548 0.843 0.861 0.650

Passage 0.850 0.733 0.889 0.821 0.805

Railing 0.760 0.626 0.842 0.852 0.696

Ramp 0.803 0.680 0.870 0.839 0.731

Ridge 0.854 0.622 0.230 0.304 0.199

Sidewalk 0.929 0.945 0.943 0.947 0.913

Sidewalk 2 0.947 0.914 0.913 0.912 0.904

Sidewalk L. 0.889 0.942 0.954 0.950 0.912

Sign 0.890 0.835 0.933 0.899 0.854

Street 0.940 0.885 0.919 0.904 0.917

x̄ 0.852 0.753 0.861 0.828 0.784

and Ramp videos show the algorithm’s limits. Large parts
of the ground section cannot be recognized. We observe the
worst detection accuracy in the Ridge video. Much noise is
created in the disparity map by the combination of grass partly
covered with snow, which has very low texture information.
Furthermore, this video has by far the smallest amount of
visible ground section which causes the algorithm to detect
more false positives in relation to other videos. We provide an
example video in the supplemental material.

While the average accuracy over all videos is 78.4%, the
accuracy over all frames is considerably higher at 91.74%
when using optimal thresholds for each video. This difference
can be explained by the varying length of the videos. In fig-
ure 3, we show a bad classification example, which is part
of the Pan video. The system fails this situation and only a
small percentage of the accessible ground section is correctly
classified. The stereo reconstruction cannot deliver sufficient
information and the classifier cannot deal with the created
additional noise in the disparity map.

As we have shown, our approach allows for a fast and
effective accessible section detection, even in crowded scenes.
A major drawback however is our reliance on a good stereo
reconstruction. While our system can perform in real time on
a modern machine, we strongly depend on the quality of the

reconstruction process. The stereo reconstruction we used for
our evaluation is computationally expensive and prevents real
time usability for user studies. However, using a Kinect a per-
formance of 30 frames per second is achieved without putting
heavy load on the used machine. We observe another deficit in
border regions between accessible section and obstacles. Due
to our chosen fixed kernel size, we fail to detect small obstacles
and reduce our accuracy along the way. We could mitigate
this effect through the implementation of varying kernel sizes
depending on the observed situation and their necessity.

6. CONCLUSION

We presented a simple yet efficient method to determine the ac-
cessible section in front of a walking person. We use the depth
information provided by, e.g., a stereo camera to calculate
the ground plane and subsequently derive the section of the
image that is not blocked by obstacles. In order to evaluate the
quality of the proposed approach, we recorded a novel dataset.
The dataset consists of 20 videos depicting urban scenes that
were recorded using a hand held stereo camera rig. It con-
tains realistic amounts of lighting variations, ego-motion, and
scene variety in urban scenarios. We will make the software
framework, its base modules, as well as the dataset publicly
available.

As part of our future work, we plan to extend our work
to monocular camera setups to allow for future application
on off-the-shelf mobile phones. Furthermore, we intend to
investigate how we can use haptic or auditory output modalities
to communicate the information to visually impaired users.
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