
KIT – The Research University in the Helmholtz Association

Mind the Gap: Virtual Shorelines for Blind and Partially
Sighted People

Daniel Koester, Maximilian Awiszus, Rainer Stiefelhagen
Karlsruhe Institute of Technology

Ø We propose a novel routing system for blind and partially sighted
people on a shoreline level of detail.

Ø We rely on openly available geolocation data.
Ø The routing considers actual white-cane based movement along

inner & outer shorelines.
Ø We evaluate on 1870 routes between public transit stations and

common destinations in an urban area.
Ø The algorithm creates safer routes: avoid informal crossings, prefer

accessible pedestrian signals and integrate available shorelines.
Ø Our system improves the users’ understanding of the upcoming

route, the environment lying ahead and its impediments.

0) “Please turn north until you reach a façade.”
1) “Follow the façade to the left for 8m.”
2) “Continue for 18m at 1 o’clock to cross a driveway.”
3) “Follow the façade for 16m.”
4) “Continue for 12m straight to cross a driveway.”
…
10) “Turn right and follow the façade for 6m.”
11) “Continue for 6m at 10 o’clock across the sidewalk.”
12) “You have reached your destination.”

d̄ r̄w p̄s p̄sa p̄sp c̄

ROSRM 621 26,4 2.327 0.205 0.019 0.702
RWalkway 654 46,4 4.819 0.338 0.070 1.501
RAPS 655 45,5 4.709 0.320 0.814 0.615

d̄ r̄
w

s̄
r

s̄
v

c̄

R
Shorelines

178 00.0 31.4 7.9 .056
R

final

198 22.0 26.0 8.2 .035

Public transit station based route evaluation:
distance (𝑑̅), % pedestrian walkway (𝑟̅$), # pedestrian signal (𝑝𝑠),

haptic/aural/pilot-tone APS (𝑝𝑠'/𝑝𝑠)),
% real/virtual shorelines (𝑠*̅/𝑠+̅) and # informal crossings (𝑐̅).

v1 v2

v3 v4 v5

v6

e2

e3

e4

e5

e1

e6

e3

e4

e5

e2

e6

e1

v6

v5

v24

v44

v2v1

v3

v14

v34

v54

Directed Graph to Edge Expanded Graph
Transformation:

Ø DG used for routing algorithms, models
distances between nodes in edges

Ø Dual EEG allows to model
Turn-Restrictions

Ø Here: disallow right turn from
𝑒. to 𝑒/ at intersection 𝑣1

Ø Allows us to model different
ways to cross the same
intersection

WC > WPS > WAPS > WAPSp > WR > WS > 1

�pupvlI :=

8
><

>:

WS · kpu � pvk2 , (�pulI = 0) ^ (li 2 S)
WR(li) · kpu � pvk2 , (�pulI = 0) ^ (li 2 R)

�pulI , otherwise

�pulI := (1 + |Cpupv | · WR) · d(pu, li) WR(li) :=

8
>>>>>><

>>>>>>:

WC , informalCrossing(li)

WPS · WR, PedestrianSignal(li)

WAPS · WR, APS (li)

WAPSp · WR, PilotTone(li)

WR, otherwise

1: d := {0,1, . . . ,1}
2: prev := {0,�1, . . . ,�1}
3: q := {(pr=0, 0)}
4: while q 6= ? do

5: pu := q.pop()
6: for all li 2 (S 0

R [R) do

7: pv := fnear(pu, li)
8: if d[u] + �pupvlI < d[v] then
9: d[v] := d[u] + �pupvlI

10: prev[v] := u
11: q.push(pv, d[v])
12: end if

13: end for

14: end while

Pre-Defined Weight Constraints:

Modified Cost Function:

Routing Algorithm:

(1-3) initialize cumulative node {𝒅}istance,
{𝒑𝒓𝒆𝒗}ious node for shortest
connection and distance sorted
priority {𝒒}ueue

(4-5) while 𝒒 not empty, take closest node
(6) check all reachable shoreline or

OSM route segments
(7) closest façade point for 𝒑𝒖 along 𝒍𝒊
(8-11) if distance to new node < current,

store and add new node to 𝒒

Unmarked
Crossing!

Pedestrian
Signals
Only!

Shoreline
Routing!

Merged
Routing!

