Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People

Daniel Koester, Maximilian Awiszus, Rainer Stiefelhagen Karlsruhe Institute of Technology

- > We propose a novel routing system for blind and partially sighted people on a **shoreline level of detail**.
- We rely on openly available geolocation data.
- The routing considers **actual white-cane based movement** along inner & outer shorelines.
- ➤ We evaluate on 1870 routes between public transit stations and common destinations in an urban area.
- The algorithm creates **safer routes**: avoid informal crossings, prefer accessible pedestrian signals and integrate available shorelines.
- Our system improves the users' understanding of the upcoming route, the environment lying ahead and its impediments.

Routing Algorithm:

- (1-3) initialize cumulative node $\{d\}$ istance, $\{prev\}$ ious node for shortest connection and distance sorted priority $\{q\}$ ueue
- (4-5) while q not empty, take closest node
- (6) check all reachable shoreline or OSM route segments
- (7) closest façade point for p_u along l_i (8-11) if distance to new node < current, store and add new node to q

 $\mathcal{W}_{APS_p} \cdot \mathcal{W}_R$, $PilotTone(l_i)$

otherwise

Pre-Defined Weight Constraints: $\mathcal{W}_C > \mathcal{W}_{PS} > \mathcal{W}_{APS} > \mathcal{W}_{APS_p} > \mathcal{W}_R > \mathcal{W}_S > 1$

Directed Graph to Edge Expanded Graph Transformation:

Dual *EEG* allows to model *Turn-Restrictions*

- From Here: disallow right turn from e_1 to e_6 at intersection v_4
- Allows us to model different ways to cross the same intersection

- 0) "Please turn north until you reach a façade."
- 1) "Follow the façade to the left for 8m."
- 2) "Continue for 18m at 1 o'clock to cross a driveway."
- 3) "Follow the façade for 16m."
- 4) "Continue for 12m straight to cross a driveway."
- 10) "Turn right and follow the façade for 6m."
- 11) "Continue for 6m at 10 o'clock across the sidewalk."
- 12) "You have reached your destination."

	$ar{d}$	$ar{r}_w$	$ar{ps}$	$ar{ps}_a$	$ar{ps}_p$	\bar{c}
R_{OSRM}	621	$26,\!4$	2.327	0.205	0.019	0.702
$R_{Walkway}$	654	$46,\!4$	4.819	0.338	0.070	1.501
R_{APS}	655	$45,\!5$	4.709	0.320	0.814	0.615

Public transit station based route evaluation:

distance (\bar{d}) , % pedestrian walkway (\bar{r}_w) , # pedestrian signal $(\bar{p}\bar{s})$, haptic/aural/pilot-tone APS $(\bar{p}\bar{s}_a/\bar{p}\bar{s}_p)$,

% real/virtual shorelines (\bar{s}_r/\bar{s}_v) and # informal crossings (\bar{c}) .

	$ar{d}$	$ar{r}_w$	\overline{s}_r	\overline{s}_v	\bar{c}
$R_{Shorelines}$ R_{final}	178 198		31.4 26.0		.056 . 035