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Abstract. Currently existing navigation and guidance systems do not
properly address special guidance aides, such as the widely used white
cane. Therefore, we propose a novel shoreline location system that detects
and tracks possible shorelines from a user’s perspective in an urban sce-
nario. Qur approach uses three dimensional scene information acquired
from a stereo camera and can potentially inform a user of available shore-
lines as well as obstacles that are blocking an otherwise clear shoreline
path, and thus help in shorelining. We evaluate two different algorithmic
approaches on two different datasets, showing promising results. We aim
to improve a user’s scene understanding by providing relevant scene in-
formation and to help in the creation of a mental map of nearby guidance
tasks. This can be especially helpful in reaching the next available shore-
line in yet unknown locations, e.g., at an intersection or a drive-way.
Also, knowledge of available shorelines can be integrated into routing
and guidance systems and vice versa.
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1 Introduction

Today’s navigation systems have become ubiquitous, as every smartphone capa-
ble of running Google Maps', it’s accompanying Maps smartphone application,
or other available navigation software, literally puts this capability into every-
one’s pocket. It was just recently that some of these added specialized pedestrian
modes—Google Maps did so only in 2015—-and provided a huge improvement over
the so far road based routing. However, almost none of the existing systems
address any special requirements, such as those of people affected by cerebral
palsy, people with walking aids, or blind and partially sighted people. There-
fore, to this modern day and age, it is common for blind and partially sighted
people to mostly rely on other, more traditional means: the traditional skill of
white cane usage—a skill that has to be learned through Orientation and Mobility
Training—as well as guide dogs, or less common, echolocation.

In recent years, mostly through the creation of crowdfunded projects, espe-
cially the Open Street Map?® project, innovation in those fields has hugely
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improved for researchers and hobbyists alike, as many more data sources are now
publicly available [1] and their quality continues to increase over time [2]. Using
such available data sources, especially geolocation meta data, e.g., location and
availability of accessible pedestrian traffic lights, zebra crossings, ramps, foot-
bridges and many more, the creation of adapted routing algorithms has become
feasible. Also, it is now possible to create routes that integrate the usage of as-
sistive systems into low-level routing decisions. Recently, Koester et al. [3] have
investigated such routing on a shoreline-level detail, in order to provide routes
for blind and partially sighted people. They try to adhere to specific require-
ments and include learned white cane usage patterns by integrating shorelines
into the routing process.

In this work, we try to visually detect and track shorelines from a first person
view approach, using three dimensional, stereo reconstruction data provided by
a body worn camera. A few examples of our shoreline detection can be seen in
varying situations in Fig. 1.

First, we calculate and track the main vanishing point in our image and
determine a region of interest to search for shorelines, usually below the vanishing
point to left and right. Those shorelines are mostly haptic edges of some kind,
e.g., between the sidewalk and building walls, walkway side curbs or walkway
borders, and are visible as such in a stereo reconstruction. We have developed
two slightly different variations to track these, both provide a candidate for each
frame. Then we track and average our shoreline candidates over multiple frames
and report the most promising one(s).

Our proposed system is able to inform users of available close by shorelines
that point towards their current walking direction and can help to locate the next
available shoreline from afar. This is especially useful after road crossings or in
urban areas, where buildings are separated by driveways and the next shoreline
might be hard to find, or navigate to in a straightforward manner. The system
proves especially helpful in unknown locations, where a lot of white cane users
would most likely not feel comfortable to explore the terrain by themselves.
Furthermore, having additional shoreline availability information can greatly
improve a user’s scene layout understanding in general as well as the personally
perceived safety when navigating in busy urban areas.

2 Related Work

While navigation systems have become widespread, they usually don’t adapt
to special needs, or often require expensive specialized hardware, as stated by
Csapo et al. [4] in a survey of routing applications for blind and partially sighted
people. Except for the recent shoreline level routing proposed by Koester et
al. [3], existing routing approaches do not acknowledge the special requirements
created by shorelining and the specific requirements this technique creates for
such systems when it comes to low level decisions.

First person view approaches for navigation and orientation of blind and
partially sighted people have so far mostly focused on very specific and limited
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Fig. 1. Four example images, where the yellow dashed line shows the reference label,
while the green dotted line is our detection. (a) is the full image of a building’s facade,
while (b)-(d) are magnified cutouts for improved visibility, where (b) shows a stone-
fence, (c) a gap in the shoreline due to a driveway and (d) a stone wall. All four show
our algorithm is capable of very accurately detecting shorelines in varying situations.

street crossing modalities, such as zebra crossing detection by Se [5], Ahme-
tovic et al. [6,7,8], or Ivanchenko et al. [9,10], and traffic lights, for example by
Ivanchenko et al. [11]. A survey by Elmannai et al. [12] provides a comprehensive
overview of general wearable assistive navigation and orientation devices, and
discusses benefits and limitations in detail.

To the best of our knowledge, no existing work has so far tried to detect and
track inner or outer shorelines for white cane related usage of blind and partially
sighted people, using a visual approach from a first person viewpoint. The most
similar work has been created by Coughlan et al. [13,14] and Ivanchenko et
al. [15], who presented systems for curb and shoreline detection for blind and
partially sighted wheelchair users, in order to prevent them from hazards and
obstacles. Although their systems were not intended for active white cane usage,
their motivation and intention is quite similar to ours.



4 D. Koester, T. Allgeyer, R. Stiefelhagen

3 Methodology

Our algorithm consists of two main components: a vanishing point detection and
the actual shoreline detection. Furthermore, we use a simple tracking approach
for both steps to improve and stabilize their detection over time. Currently, our
systems assumes the existence of a vertical segment next to the ground-plane,
i.e., a building’s wall or a fence adjacent to the pavement and we assume an urban
area in a Manhattan Style World. Whether such a wall is generally available
can also be gleaned from additional information, for example the shoreline-level
routing provided by Koester et al. [3], although, the required data and accuracy
is not guaranteed for in the underlying Open Street Map, as the quality might
vary greatly between locations.

3.1 Visual Odometry

Visual odometry data is readily provided by the Stereolabs ZED? camera for our
own dataset and we use LIBVISO2* [16] for the Flowerboz® dataset (as it does
not provide odometry). We estimate the user’s current direction of movement
from that visual odometry data by averaging the location differences of the last
10 camera positions. This provides us with an estimated direction of possible
future shoreline candidates, as those have to be somewhat aligned to the walking
direction. Since we assume a Manhattan Style World, this direction often also
aligns with the vanishing point, which we also try to detect.

3.2 Vanishing Points

Vanishing points are detected similar to Wu et al. [17], albeit with some major
differences. First, we use a different line detection algorithm, EDLines [18], to
search for all straight line segments, but discard all almost horizontal and vertical
segments, as these usually don’t contribute to vanishing points — at least in a
Manhattan Style World almost all edges are either horizontal /vertical or point
straight towards a vanishing point. Similar to Wu et al. [17], we then weigh line
segments based on their direction, i.e., directions closer to 45° are better, and
length, i.e., where longer is better. Finally, we use RANSAC [19] to determine
candidates and decide on the point with the highest accumulated score.

These points are tracked over time (one per frame) in world coordinates by
converting them into spherical coordinates and using a two-dimensional decaying
accumulator array over a sphere’s surface, where the maximum of all cells yields
the averaged vanishing point coordinates. Those are then projected into the 2D
image, which stabilizes the vanishing point in the always moving camera image
with respect to the person’s own ego-motion.

3 https://www.stereolabs.com/zed/
4 http://cvlibs.net/software/libviso/
® https://cvhci.anthropomatik.kit.edu/~dkoester/data/flowerbox.zip
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3.3 Shorelines

Using the vanishing point, we determine a region of interest in the disparity
image or the point cloud from the stereo reconstruction. This region is located
below the vanishing point, usually to the left or right of it, where one would
expect to find inner or outer shorelines, i.e., sidewalk curbs or building walls.

Since the ZED depth camera directly provides a point cloud and surface nor-
mals, we can use those normals to distinguish between ground (upright surfaces)
and walls (vertical surfaces), by comparing them with our movement vector and
assuming a somewhat upright held camera (a constraint that is usually satis-
fied by body worn cameras). We use an implementation [20] of an optimized
RANSAC modification by Chum et al. [21] to generate surfaces from those iden-
tified ground and wall pixels. The intersection of ground and wall surface then
represents our shoreline candidate for the current frame.

When we do not have point clouds and surface normals (the Flowerbox
dataset does not provide them), we rely only on the disparity image. We then
filter the above mentioned region in the image using a median of a Gaussian to
smooth noise and outliers in the depth data. After calculating gradients in X
and Y direction of the disparity image, we can separate horizontal surfaces, e.g.,
ground pixels, from vertical surfaces, e.g., walls or curbs, using fixed thresholds.
A morphological opening operation closes small holes and discards some more
outliers. Finally, we determine shoreline candidate points by combining border
regions from horizontal and vertical surfaces in regions where these borders over-
lap. We then transform these points into 3D space and use RANSAC to calculate
our final shoreline candidate.

In both cases, we then merge consecutive shoreline candidates, i.e., from
consecutive images in a similar location, by using a confidence based weighted
combination of these candidates. We keep a list of candidates and track their
confidences over time, updating them each time a candidate is found in the
currently evaluated frame. Keeping only valid candidates over time, we return
the average of all remaining candidates. This tracking approach also stabilizes the
shoreline and improves its distance and orientation with respect to the actually
existing shoreline.

4 Experimental Evaluation

We have evaluated our approach on suitable parts of the Flowerboz dataset, as
this dataset provides us with calibrated stereo images, taken from a first person
viewpoint in an urban setting. We only consider videos where shorelines are
clearly visible, i.e., building walls or curbs and label the visible shorelines. To
calculate an angular error and the minimal distance of our detected shoreline to
the label, we convert our 2D labels into a 3D line by projecting the individual
pixels of the labeled line in the 2D image into 3D coordinates and then use
RANSAC to determine the best fitting line in 3D world coordinates.

This allows us to directly calculate the three dimensional angular error, i.e.,
the angle between the two lines viewed as vectors from the same origin. The
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Table 1. Shoreline detection results for 3 videos of the FlowerBor dataset. Angles
(median ©, mean O, standard deviation Jo) are given in degrees and distances (median

d, mean d, standard deviation d,) are in c¢m, calculated using transformed real world
points and (shore-)lines.

e 6 e d d ba
sidewalk 0.6° 3.8° 9.5° 22cm 6.8cm  18.2cm
sidewalk-2 1.4° 3.9° 95° 1.7¢m 3.3cm 5.7cm

sidewalk-leveled 0.4° 1.1° 3.9° 2.4cm 2.4cm 1.3cm

Table 2. Shoreline detection results for 6 videos of our own data for our disparity
image based algorithm (same algorithm as used for Flowerboz). Angles and distances
are given as in Table 1. Some digits had to be omitted for space reasons.

frame-wise detection averaged detection

6 6 o d d 64| 6 6 6 d d b4

I 5.8 80 11.1 0.28 0.40 043 | 72 83 5.6 040 055 043
II 13 14 9.9 0.10 0.10 0.06 | 13 14 89 0.12 021 0.36
IIT 23 44 52 019 021 0.14 | 1.8 2.8 3.0 022 026 0.20
Iv. 21 82 12 012 016 019 |32 72 109 013 019 0.23
vV 26 3.0 1.9 012 0.12 007 | 3.0 84 183 0.13 043 0.86
VI 22 25 14 016 0.16 0.06 | 2.5 4.2 3.5 019 0.46 0.53

Table 3. Shoreline detection results for 6 videos of our own data for our point cloud
based algorithm, using surface normales. Angles and distances are given as in Table 1.

frame-wise detection averaged detection
e 6 e d d & | © O o d d  da

I 20 6.2 142 0.07 0.15 026 |15 29 34 012 020 0.24
II 3.0 54 77 005 009 02016 20 1.8 0.06 0.07 0.08
IIr 15 46 9.2 0.04 006 013 |11 20 28 0.03 0.03 0.02
III 1.5 4.6 9.2 004 006 013 |11 20 28 0.03 003 0.02
Iv. 42 77 141 003 004 006 |24 30 18 0.02 0.06 0.14
A% 1.2 1.7 24 003 0.04 007|111 13 08 0.02 0.03 0.11
VI 14 41 84 004 006 017 | 1.3 16 1.0 0.02 0.05 0.04

Table 4. Average values over all videos of Table 2 and 3, comparing the disparity
image based algorithm (DI) with the point cloud based algorithm (PCL). Angles and
distances are given as in Table 1.

frame-wise detection averaged detection
© 6 b d d b | O O b d d b

DI 46 6.7 70 0.16 019 0.16 | 51 74 84 020 0.35 043
PCL 22 49 93 004 008 01515 21 19 0.04 0.07 0.10
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minimal distance is calculated by determining the three dimensional distance of
our detected shoreline candidate to each point on the labeled line, as detection
and label are almost always a set of skewed lines that do not intersect.
Evaluation results for the most viable three of the FlowerBoz videos are given
in Table 1. Furthermore, we evaluate our approach on our own data recorded
with a Stereolabs ZED camera and compare both versions of our algorithm, the
disparity image based algorithm in Table 2 as well as the point cloud and surface
normal based algorithm in Table 3. We show that, especially for the point cloud
based version, the averaging and tracking over multiple frames helps a lot to
reduce errors. Finally, we compare both algorithms in Table 4, where the point
cloud based method greatly outperforms the disparity image based algorithm.

5 Conclusion

We demonstrate an algorithm to detect shorelines from a first person view. To
the best of our knowledge, no such system exists so far for blind and partially
sighted people for use with the white cane. Our proposed shoreline detection
algorithm, which relies on vanishing points and edges it can detect and track,
achieves very promising results and works very accurate for the tested scenarios.
This approach could potentially be used to aide in shorelining, i.e., locating and
navigating along shorelines, a technique commonly used by blind and partially
sighted people. However, some adaption to less strong visible shorelines, such as
walkway borders, is required to increase its usefulness and further evaluation is
needed. Finally, we plan to test our approach in a user study to determine it’s
usefulness and integrate it as a part of a guidance system for blind and partially
sighted people that is capable of providing fine grained orientation and guidance
information to the user.
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