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Abstract—While recognition of most facial variations, such as identity, expression,

and gender, has been extensively studied, automatic age estimation has rarely

been explored. In contrast to other facial variations, aging variation presents several

unique characteristics which make age estimation a challenging task. This paper

proposes an automatic age estimation method named AGES (AGing pattErn

Subspace). The basic idea is to model the aging pattern, which is defined as the

sequence of a particular individual’s face images sorted in time order, by

constructing a representative subspace. The proper aging pattern for a previously

unseen face image is determined by the projection in the subspace that can

reconstruct the face image with minimum reconstruction error, while the position of

the face image in that aging pattern will then indicate its age. In the experiments,

AGES and its variants are compared with the limited existing age estimation

methods (WAS and AAS) and some well-established classification methods (kNN,

BP, C4.5, and SVM). Moreover, a comparison with human perception ability on age

is conducted. It is interesting to note that the performance of AGES is not only

significantly better than that of all the other algorithms, but also comparable to that

of the human observers.

Index Terms—Computer vision, pattern recognition, machine learning, face and

gesture recognition, age estimation.
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1 INTRODUCTION

PEOPLE can effortlessly extract many kinds of useful information
from a face image, such as identity, gender, expression, approx-
imate age, etc. The automatic extraction of most of the information
has been extensively studied. However, so far, there is relatively
little work concerning automatic age estimation, despite the fact
that it is alone an interesting problem, as well as a challenging
subproblem in tasks like face recognition [29]. People’s behavior
and preference are different at different ages [1], indicating vast
potential applications of automatic age estimation.

Compared with other facial variations, aging effects display
three unique characteristics:

1. The aging progress is uncontrollable. No one can advance or
delay aging at will. The procedure of aging is slow and
irreversible.

2. Personalized aging patterns. Different people age in different
ways. The aging pattern of each person is determined by
his/her genes as well as many external factors, such as
health, lifestyle, weather conditions, etc.

3. The aging patterns are temporal data. The aging progress
must obey the order of time. The face status at a particular
age will affect all older faces, but will not affect those
younger ones.

Each of these characteristics contributes to the difficulties of
automatic age estimation. First, because people cannot freely control
aging variation, the collection of sufficient training data for age

estimation is extremely laborious. This difficulty is now partly
alleviated due to the public dissemination of the FG-NET Aging
Database [24]. Nevertheless, each subject in this database only has
face images at a few ages, i.e., the data set is highly incomplete in the
view of aging patterns. Fortunately, a “complete” aging face
database is unnecessary since human beings also learn to perceive
facial ages from incomplete aging patterns. Thus, the learning
algorithm applied to the aging patterns must be able to handle
highly incomplete data. Second, the mapping from the instances
(face images) to the class labels (ages) is not unique, but
complicatedly depends on personalized factors. Thus, the selection
of a suitable aging pattern for a particular face becomes a crucial step
in age estimation. Third, the set of class labels (ages) is a totally
ordered set. Each age has a unique rank in the time sequence. Once
the suitable aging pattern for a particular face image is selected, the
“position” of the face in that aging pattern uniquely determines its
age. Consistent with the last two characteristics, automatic age
estimation should involve at least two main steps: Step 1 is to
determine the suitable aging pattern for a particular face and Step 2
is to find the position of the face in that aging pattern.

This paper proposes a subspace approach named AGES (AGing
pattErn Subspace) for automatic age estimation. Instead of using
isolated face images as data samples, AGES regards each aging
pattern as a sample. The basic idea is to model the aging patterns by
a representative subspace. Each point in the subspace corresponds
to one aging pattern. The proper aging pattern for a previously
unseen face image is determined by the projection in the subspace
that can best reconstruct the face image. Once the proper aging
pattern is determined, the position of the face in the aging pattern
will then indicate its age.

The rest of this paper is organized as follows: First, the related
work is briefly reviewed in Section 2. Then, the concept of an aging
pattern is introduced in Section 3. After that, the AGES algorithm is
proposed in Section 4. In Section 5, the experimental results are
reported. Finally, in Section 6, conclusions are drawn.

2 RELATED WORK

There are some earlier works aiming to simulate the aging effects on
human faces, which is the inverse procedure of age estimation. For
example, Burt and Perrett [2] simulated aging variations by super-
imposing typical aging changes in shape and color on face images.
Later, Tiddeman et al. [25] extended this work by adopting a wavelet-
based approach to add high frequency information to the age
progressed images. O’Toole et al. [15] described how aging
variations can be made by applying a standard facial caricaturing
algorithm to the 3D models of faces. Hutton et al. [9] proposed a
dense surface point distribution model for expressing the shape
changes associated with growth and aging. Hill et al. [7] presented a
statistical approach to age face images along the “aging direction” in
a face model space. Scandrett et al. [22] constructed a statistical model
in which historical, familial, and average growth tendencies of a peer
group can be incorporated. Ramanathan and Chellappa [19]
proposed a craniofacial growth model that characterizes growth
related shape variations observed in human faces during young
ages. Although these works did not attempt age estimation, they did
reveal some of the important facts in the relationship between age
and face. Some other work tried to partly reveal the mapping from
face to age. For example, Ramanathan and Chellappa [18] proposed a
method for face verification across age based on a Bayesian classifier.
Zana et al. [28] proposed a face verification algorithm in polar
frequency domain which is robust against aging variation. Shi et al.
[23] studied how effective are landmarks and their geometry-based
approach for face recognition across ages. Kwon and da Vitoria Lobo
[11] proposed an age classification method based on well-controlled
high-quality face images, which can classify faces into one of the
three groups (babies, young adults, and senior adults). Zhou et al.
[31] presented a boosting-based algorithm for image-based regres-
sion (IBR). Although the algorithm was designed for the general
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purpose of IBR, it can be well applied to the problem of age
estimation.

The first true age estimation algorithm was proposed by Lanitis
et al. [13]. In their work, the aging pattern is represented by the aging
function: age ¼ fðbbÞ, where bb is the vector of the face model
parameters and f is defined as a quadratic function. During the
training process, a quadratic function is fitted for each individual in
the training set as his/her aging function. To determine the suitable
aging function for a previously unseen face image during age
estimation, they proposed four different ways. Among the methods
that do not rely on the external “lifestyle profiles,” the Weighted
Appearance Specific (WAS) method achieved the best performance.
Later, Lanitis et al. [12] compared their quadratic aging function
method with several conventional classification methods in age
estimation. The algorithms were tested in the single layer mode as
well as in three hierarchical modes. As expected, all classifiers
performed better in the hierarchical modes because the hierarchical
structures handle the face image clusters separately according to the
age groups or the appearance or both. Among them, the Appearance
and Age Specific (AAS) method achieved the best performance.
However, according to the experimental results, the quadratic aging
function did not show remarkable superiority over the conventional
classifiers in the overall performance. The aging function-based
approaches regard age estimation as a conventional function
regression problem without special design for the unique char-
acteristics of aging variation. This limitation prevents them from
obtaining more satisfying results. In detail, there might be four
weaknesses in such approaches. First, the formula of the aging
function is empirically determined. There is no evidence suggesting
that the relationship between face and age is as simple as a quadratic
function. Second, the temporal characteristic cannot be well utilized
by the aging function. The dependent relationship among the aging
faces is monodirectional, i.e., the status of a certain face only affects
those older faces. However, the relationship revealed by the aging
function is bidirectional: Any changes on a particular face will
change the aging function, hence affecting all other faces. Third, the
learning of one person’s aging pattern is solely based on the face
images of that person. Although people age in different ways, there
must be some commonality among all aging patterns, i.e., the
general trend of aging. Such commonality is also crucial in age
estimation, especially when the personal training data is insuffi-
cient. Fourth, the aging function for the previously unseen face
image is simply a linear combination of the known aging functions,
rather than being generated from a certain model of aging patterns.
All of these problems can be solved, from a new point of view, by the
AGES algorithm. Changes start from the very beginning: data
representation.

3 AGING PATTERN

The aging function-based methods regard age estimation as a
conventional classification problem: The data are the face images,
the target is their age labels. According to the personalized
characteristic, each image I should have one more label other than
its age label ageðIÞ, i.e., its personal identity idðIÞ. If the problem is
to be solved by supervised techniques like LDA (Linear Dis-
criminant Analysis), then the algorithm must deal with the
multilabel data, which is alone a problem in machine learning.
On the other hand, if all of these labels can be integrated into the
data representation, then the multilabel problem can be trans-
formed into an unsupervised learning problem. Thus, we propose
a data representation called Aging Pattern, which is the basis of
AGES. A formal definition is given as follows:

Definition 1. An aging pattern is a sequence of personal face images
sorted in time order.

The keywords are “personal” and “time.” All face images in an
aging pattern must come from the same person and they must be
ordered by time. Take the aging pattern shown in Fig. 1 as an
example. Along the t axis, each age (0-8) is allocated one position. If

face images are available for certain ages (2, 5, and 8), they are filled

into the corresponding positions. If not, the positions are left blank.

If all positions are filled, the aging pattern is called a complete aging

pattern; otherwise, it is called an incomplete aging pattern. Before the

aging pattern can be further processed, the face images in it are first

transformed into feature vectors. Obviously, aging is a process

related to both the shape and the texture of face. Thus, the

Appearance Model [4] is used as the feature extractor, whose main

advantage is that the extracted feature combines both the shape and

the intensity of the face images. Fig. 1 gives an example of the

vectorization of the aging pattern, where bb2, bb5, and bb8 represent the

feature vectors of the face images at the ages 2, 5, and 8, respectively.
By representing aging patterns in this way, the two labels ageðIÞ

and idðIÞ are naturally integrated into the data without any pre-
assumptions. Each aging pattern implies one ID, each age is fixed
into a position in the aging pattern, and the position is ordered
according to time. Consequently, the personalized and temporal
characteristics can be well utilized. As long as the aging patterns
are well sampled, a proper model of aging patterns can be learned
and the learning process is unsupervised. However, this brings
two other challenges: 1) During training, the learning algorithm
applied to the aging patterns must be able to handle highly
incomplete training samples and 2) during age estimation on test
data, the most suitable aging pattern as well as the most suitable
position in that aging pattern must be selected for an unknown
face image. The next section mainly tackles these two problems.

4 THE AGES ALGORITHM

4.1 Aging Pattern Subspace

A representative model for the aging patterns can be built up by
the information theory approach of coding and decoding. One
widely adopted technology is using PCA [10] to construct a
subspace that captures the main variation in the data set. The
projection in the subspace is computed by

yy ¼WTðxx� ��Þ; ð1Þ

where �� is the mean vector of xx and WT ¼W�1 is the transpose of
W, which is composed by the orthogonal eigenvectors of the
covariance matrix of xx. The difficulty is that the aging pattern
vector xx is highly incomplete. Based on the characteristics of aging
patterns, an EM-like algorithm is proposed here to learn a
representative subspace.

Suppose the training set has N aging pattern vectors D ¼
fxx1; . . . ; xxNg. Any sample in this set can be written as xxk ¼ fxxak; xxmk g,
where xxak are the available features and xxmk are the missing features

of xxk. Suppose the transformation matrix is W, the projection yyk of
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Fig. 1. Vectorization of the aging pattern. The ages (0-8) are marked at the top-left

to the corresponding positions and above the corresponding feature vectors. The

missing parts in the aging pattern vector are marked by “m.”



xxk in the subspace can be calculated by (1) and the reconstruction of
xxk is calculated by

x̂xk ¼ ��þWyyk: ð2Þ

x̂xk can also be written as x̂xk ¼ fx̂xak; x̂xmk g, where x̂xak is the
reconstruction of xxak and x̂xmk is the reconstruction of xxmk . It is well
known that standard PCA can be derived by minimizing the mean
reconstruction error (residuals) of the data set D in the subspace
[10]. With the presence of the missing features xxmk , the goal is
changed into finding a W that minimizes the mean reconstruction
error of the available features

"a ¼ 1

N

XN
k¼1

ðxxak � x̂xakÞ
Tðxxak � x̂xakÞ: ð3Þ

In case the number of missing features in different instances is
highly uneven, (3) should be normalized by the dimensionality of
the missing part. This is equivalent to a preprocess of dividing each
instance by its missing dimensionality. The FG-NET Aging database
used in this paper has a similar number of missing features in each
aging pattern; thus, there is no significant difference observed in the
experiments with/without the normalization.

When initializing, xxmk is replaced by the mean vector ½��ðmk Þ�,
calculated from other samples whose corresponding features are
available. Then, standard PCA is applied to the full-filled data set
to get the initial transformation matrix W0 and mean vector ��0. In
the iteration i, the projection of xxk in the subspace spanned by Wi

is estimated first. Since there are many missing features in xxk, the
projection cannot be computed directly by (1). Note that the aging
patterns are highly redundant; it is possible to estimate yyk only
based on part of xxk [14], say xxak. Instead of using inner product, yyk
is solved as the least squares solution of

½WiðakÞ�yyk ¼ xxak � ½��ið
a
kÞ�; ð4Þ

where ½WiðakÞ� is the part in Wi and ½��ið
a
kÞ� is the part in ��i that

correspond to the positions of xxak. After getting the estimation of yyk,
x̂xk is calculated by (2) and xxmk is updated by x̂xmk . Then, standard
PCA is applied to the updated data set to get the new
transformation matrix Wiþ1 and mean vector ��iþ1. The whole
process repeats until the maximum iteration � is exceeded or "a is
smaller than a predefined threshold �. The convergence of this
algorithm is proven in the Appendix.

During the training process of AGES, the missing faces in the
training aging patterns can be simultaneously learned by recon-
structing the whole aging pattern vectors through (2). Fig. 2 shows
some typical examples of the “full-filled” aging patterns when
AGES is applied to the FG-NET Aging Database [24]. For clarity,
only the faces in the most changeable age range from 0 to 18 with two
year increments are shown. Since remarkable variations other than
the aging effects exist in the FG-NET Aging Database and the feature
extractor does not treat them separately, some generated faces
present noticeable variations in expression, pose, or illumination.
These variations can be dealt with, as will be discussed in Section 5,
by applying LDA to the Appearance Model parameters. It can be
seen that the learned faces inosculate with those real faces very well
in the aging patterns. Thus, this learning algorithm can also be used
to simulate aging effects on human faces.

The process of the learning algorithm is actually a process of
interaction between the global aging pattern model and the
personalized aging patterns. As mentioned in Section 2, although
different people age in different ways, the commonality (modeled
by the subspace) of all aging patterns is also crucial for age
estimation, especially when the aging patterns are highly incom-
plete. In each iteration, the missing part of the personal aging pattern
is first estimated by the current global aging pattern model. Then,
the global model is further refined by the updated personal aging
patterns. In this way, the commonality and the personality of the
aging patterns are alternately utilized to learn the final subspace.

4.2 Age Estimation

The aging pattern subspace is a global model for aging patterns,
each of which corresponds to a sequence of age labels. But, the task
of age estimation is based on a single face input and expects a
single age output. This section will describe how this can be done
with the aging pattern subspace.

Given a previously unseen face image I, its feature vector bb is first
extracted by the feature extractor. Recall the two steps of age
estimation mentioned in Section 1. The first step is to find a proper
aging pattern for I. Note that each point in the subspace corresponds
to one aging pattern. Thus, the proper aging pattern for I can be
selected through finding a point in the subspace that can best
reconstruct bb, i.e., minimizing the reconstruction error. However,
without knowing the position of I in the aging pattern, which should
be determined in the second step, the reconstruction error cannot
actually be calculated. Thus, I is placed at every possible position in
the aging pattern, getting p aging pattern vectors zzjðj ¼ 1 . . . pÞ by
placing bb at the position j in zzj. Noting that bb is the only available
feature in zzj, the projection yyj can be estimated by (4), and the
reconstruction error can be calculated by

"aðjÞ ¼ ðbb� ��ðjÞ �WðjÞyyjÞTðbb� ��ðjÞ �WðjÞyyjÞ; ð5Þ

where ��ðjÞ is the part in �� and WðjÞ is the part in W that
corresponds to the position j. Then, the projection yyr that can
reconstruct bb with minimum reconstruction error over all of the
p possible positions is determined by

r ¼ arg min
j
ð"aðjÞÞ: ð6Þ

Thus, the suitable aging pattern for I is zzr. Step 2 afterward
becomes trivial because r also indicates the position of I in zzr.
Finally, the age associated to the position r is returned as the
estimated age of I. As a byproduct of age estimation, the whole
aging pattern vector can be reconstructed as Wyyr, which can be
used to simulate faces at different ages of the subject in I.

During the age estimation process of AGES, the proper aging
pattern for the test image is generated based on both the aging
pattern subspace and the face image feature. The subspace defines
the general trend of aging, and the face image feature represents the
personalized factors. By placing the feature vector at different
positions, candidate aging patterns specified to the test face are
generated. Among these candidates, only one is consistent with the
general aging trend, which can be detected via minimum reconstruc-
tion error by the aging pattern subspace. At the same time, the
position of the test image in that aging pattern can be determined.
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Fig. 2. The “full-filled” aging patterns. Each line shows the aging pattern of one person. The ages are marked above the corresponding faces. The faces learned by the

algorithm are surrounded by the dashed squares.



5 EXPERIMENTS

5.1 Methodology

The FG-NET Aging Database [24] and the MORPH database [20] are
used in the experiments. The FG-NET Aging Database contains
1,002 face images from 82 subjects. In the MORPH database, there
are 1,724 face images from 515 subjects. Each subject has around
three aging images, which are too few for the training of AGES.
Thus, in the experiment, MORPH is only used to test the algorithms
trained on the FG-NET database. Because all subjects in the FG-NET
database are of Caucasian descent, only the 433 images of Caucasian
descent in the MORPH database are used as the test set. The ages in
both databases are distributed highly unevenly in wide ranges: 0-69
for FG-NET and 15-68 for MORPH. The age range distribution is
tabulated in Table 1. Typical aging face sequences from both
databases are shown in Fig. 3. As can be seen, besides the aging
variation, most aging sequences display other variations in pose,
illumination, expression, occlusion, etc. Although these variations
might be harmful, all images are used in the experiment because
data insufficiency is more serious a problem.

The face feature extractor used in the experiments is the
Appearance Model [4]. Sixty-eight landmark points of each face
image are used to train the shape model and 5,000 pixels are used in
the shape-normalized faces. The extracted feature requires 200 ðn ¼
200Þmodel parameters to retain about 95 percent of the variability in
the training data. In order to deal with variations other than aging in
the training set, LDA can be applied to the 200-dimensional feature
vectors with age labels. LDA tries to find a subspace where images of
different ages scatter while those of the same age converge. In this
sense, the resulting discriminant parameters are expected to be more
related to the aging variation and, hence, the effect of other variations
can be partially suppressed. The AGES based on such discriminant
parameters is denoted by AGESlda. In both AGES and AGESlda, the
dimension of the aging pattern subspace is set to 20 ðd ¼ 20Þ, the
maximum iteration � ¼ 50, and the error threshold � ¼ 10�3.

In this experiment, AGES is compared with WAS [13], AAS [12],
as well as some conventional classification methods including
k-Nearest Neighbors (kNN) [16], Back Propagation neural network
(BP) [21], C4.5 decision tree (C4.5) [17], and Support Vector
Machines (SVM) [26]. The algorithms are first tested on the FG-
NET Aging Database through the Leave-One-Person-Out (LOPO)
mode, i.e., in each fold, the images of one person are used as the test
set and those of the others are used as the training set. After 82 folds,
each subject has been used as the test set once and the final results
are calculated based on all of the estimations. In this way, the
algorithms are tested in the case similar to real applications, i.e., the
subject for whom the algorithms attempt to estimate his/her age is
previously unseen in the training set. In order to further test the
generalization ability, the algorithms trained on the FG-NET Aging
Database are then tested on the MORPH database. Note that, as a

test set, the possible age range of the MORPH data is assumed to be
the same as that of the FG-NET Aging Database (0-69), although the
actual range is much smaller (15-68).

For all of the comparative algorithms, several parameter
configurations are tested and the best result is reported. For AAS,
the error threshold in the appearance cluster training step is set to 3
and the age ranges for the age specific classification are set as 0-9, 10-
19, 20-39, and 40-69. The k in kNN is set to 30. The architecture of the
BP neural network has a single hidden layer of 100 neurons and the
same number of output neurons as the number of classes. The
parameters of C4.5 are set to the default values of the
J4.8 implementation [27]. SVM follows the 1-against-1 method [8]
for multiclass classification and uses the RBF kernel with the bias 1.

As an important baseline, the human ability in age perception is
also tested. From each age range listed in Table 1, 5 percent of the
face images are randomly selected from the FG-NET Aging
Database. In total, 51 face images are selected and presented to
29 human observers (24 males and 5 females). The age range
distribution of the observers themselves is listed in the fourth
column of Table 1. None of them received training on the task before
the experiment. There are two stages in the experiment. In each
stage, the 51 face images are randomly shown to the observers, and
the observers are asked to choose an age from 0 to 69 for each image.
The difference is that, in the first stage (HumanA), only the gray-
scale face regions are shown, while, in the second stage (HumanB),
the whole color images are shown. HumanA intends to test age
estimation purely based on face, while HumanB intends to test age
estimation based on multiple cues including face, hair, skin color,
clothes, and background. Note that the information provided in
HumanA is the same as that provided to the algorithms.

5.2 Standard Age Estimation

First, the algorithms and the human ability are evaluated by the
criterion used in [12] and [13], i.e., the Mean Absolute Error (MAE),
which is tabulated in Table 2. The algorithms performing better than
HumanA are highlighted in boldface and those better than HumanB
are underlined. The results of the pairwise one-tailed t-test at the
significance level 0.025 are listed in the parentheses under the
corresponding MAEs. The first number is the t-test result of AGES
paired with other algorithms, the second number is that of AGESlda
paired with other algorithms. 1, 0, and �1 represent significantly
better, not significantly different, and significantly worse, respec-
tively. Note that the t-tests related to the human test are performed
only on those images used in the human test. When tested on the FG-
NET Aging Database (by the LOPO mode), both AGESlda and AGES
are significantly better than all the other algorithms and HumanA.
Although AGES is significantly worse than HumanB, AGESlda is not
significantly different with HumanB, which indicates the effective-
ness of using LDA to extract the aging-related features. It is worth
mentioning that even lower MAE (5.81) on the FG-NET Aging
Database was reported in [31]. However, the test mode in [31] was
different from the LOPO mode, where the whole data set was
randomly divided into 800 training images and 202 test images. This
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TABLE 1
Age Range Distribution of the Images in the Databases
and the Human Observers Participating the Experiment

Fig. 3. Typical aging face sequences in (a) the FG-NET Aging Database and

(b) the MORPH database.



brought the advantage that the aging pattern of the test image would
be included in the training set. In order to verify this, we also test
AGES in such mode and get a lower MAE of 5.27. When the
algorithms are trained on the FG-NET Aging Database but tested on
the MORPH database, all of them get higher MAE, as expected. This
time, only AGESlda can get lower MAE than that of HumanA.
However, the relative performance of the algorithms is similar to
that on the FG-NET Aging Database. Recall that, in HumanA, the
observers are provided with the same information as that fed into
the algorithms. So, the comparison between the algorithms and
HumanA is more meaningful. But, can the conclusion be drawn
from the results on the FG-NET Aging Database that all of the best
four algorithms (AGESlda, AGES, WAS, and SVM) perform better
than the human observers? Perhaps not.

MAE is only an indicator of the average performance of the age
estimators. It does not provide enough information on how
accurate the estimators might be. Suppose there are M test images,
Me�l is the number of test images on which the age estimation
makes an absolute error no higher than l (years), then the
cumulative score at error level l is calculated by

CumScoreðlÞ ¼Me�l=M � 100%: ð7Þ

If the “correct estimation” is defined as the estimation with an
absolute error no higher than l, then CumScoreðlÞ is actually the
accuracy rate. Thus, the cumulative score can be viewed as an
indicator of the accuracy of the age estimators. Since the acceptable
error level is unlikely to be very high, the cumulative scores at
lower error levels are more important.

The cumulative scores of the algorithms and human observers at
the error levels from 0 to 10 (years) are compared in Fig. 4. The
situation at higher error levels is not shown because, in general, age
estimation with an absolute error higher than 10 (a decade) is not
acceptable. Fig. 4a reveals that the result of AGESlda on FG-NET is

very similar to that of AGES. AGES=AGESlda is the most accurate
age estimator at almost all error levels. This is impressive since more
information is provided in HumanB than that fed into AGES. All of
the best four algorithms (AGESlda, AGES, SVM, and kNN) perform
better than HumanA at all error levels. Although the MAE of WAS is
lower than that of HumanA, its cumulative scores are worse than
those of HumanA in most cases, especially at the relatively
important low error levels. The situation on MORPH (Fig. 4b) is
similar to Fig. 4a with the exception that WAS performs remarkably
better relative to other algorithms, which indicates good general-
ization ability of WAS. But, its cumulative scores at all error levels
are still worse than both AGES and AGESlda.

5.3 Imbalanced Age Estimation

It is common sense that the changing rates of facial appearance at
different aging stages are different. Usually, young faces change
faster than older ones. Consequently, age estimation is more error-
vulnerable at older ages. This phenomenon is called Imbalanced Age
Estimation. Since AGES is based on the aging patterns rather than
isolated face images, the imbalanced appearance changing rate in
the aging patterns can be learned naturally. Suppose when the real
age is �, the estimated age �̂ follows a normal distribution centered
at �, i.e., �̂ � Nð�; �2Þ. The standard deviation � can be estimated
from �̂. After MIN-MAX normalization and histogram equalization,
the � values of AGES and the human observers (HumanB) on the
FG-NET Aging Database are shown as gray-scale images in Fig. 5.
The darker the intensity, the more accurate the estimation. Since the
images shown to the observers do not include all ages, an average
value of � is calculated for each age range rather than exact age. It
can be seen that the imbalanced age estimation phenomenon of
AGES is similar to that of the human observers. One exception is that
in the age range 20-24, the � value of the human observers is
relatively lower. The reason might be that most observers
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TABLE 2
MAE of Standard Age Estimation on FG-NET and MORPH

Fig. 4. Cumulative scores of standard age estimation on (a) FG-NET (LOPO) and (b) MORPH (Test Set).

Fig. 5. � values of AGES and HumanB on the FG-NET Aging Database when the real age is from 0 to 35.



themselves are within this age range (refer to Table 1), thus they are
most familiar with faces in the range. For AGES, there are two
remarkable jumps of � with the increase of age. The first is at 5 (�
increases by 139 percent) and the second is at 30 (� increases by
74 percent). These two points divide all ages into three groups with
different aging rates: infant to child (0-5, fastest), child to middle-age
(5-30, fast), and middle-age to senior (� 30, slow), which are
roughly the three main stages in human facial aging.

5.4 Age Range-Based Estimation

The above approaches might encounter a problem that the resulting
model would be skewed toward the age range that has more
instances in the training set. In order to verify this, the ages (0-69) in
the FG-NET Aging Databse are divided into three age ranges as 0-5,
6-30, 31-69, which are consistent with the age groups found by
analyzing the changes of � in Section 5.3. The MAEs of AGES in
different age ranges are shown in the first line of Table 3. As can be
seen, the MAE in 31-69 is much higher than others due to the fact that
the training samples in that range are insufficient (refer to Table 1).

One way to solve this problem is to build separate subspaces for
different age groups. The result of applying AGES separately to each
age group (denoted by AGESr) is given in the second line of Table 3.
It can be seen that the MAEs of AGESr in the first two age ranges
with relatively abundant images, are similar to those of AGES. But,
its MAE in 31-69 is remarkably lower than that of AGES because the
independent training in this range prevents the model from being
biased to other age ranges with more training samples. Note that the
MAEs of AGESr are obtained under the assumption that the age
range of the test image is known. When this does not hold, an age
range estimator is needed. AGES can be directly used for age range
estimation after relabeling the training data with the age ranges
where the corresponding ages fall into. The resulting prediction will
be an age range label indicating which subspace to use for further
estimation of the exact age. The MAE of such two-layer age
estimation is 6.52 (shown in parentheses in Table 3), which improves
the overall MAE of AGES (6.77).

5.5 Aging Effects Simulation and Face Recognition

As mentioned in Section 4.2, given a face image, AGES can be used
to simulate face images at different ages. Besides the direct
applications of aging effects simulation, such as aging missing
children, it can be used for face recognition systems across ages.

For each subject in the FG-NET Aging Database, 10 pairs of face
images are randomly selected, the first one as “gallery” face and the
second one as “probe” face. Usually, there is remarkable age
difference between them. Given a probe face, the objective of aging
effects simulation is to generate a face image at the age of the gallery
face. Some typical results of the simulation by AGES are shown in
Fig. 6. As can be seen that the simulated faces look quite similar to the
real faces (the gallery faces), only with slight difference in pose,
illumination, or expression. It is noteworthy that, for the first probe
face, the simulated face looks relatively more different from the
gallery face. This might be because the gallery face wears glasses,
which is impossible to predict based on the 4-year-old probe face. To
evaluate the simulation quantitatively, the difference between
images is calculated as the Mahalanobis Distance (MD) between
the Appearance Model parameters. The average MD from the
original probe faces to the gallery faces is 18.83, while that between

the simulated faces to the gallery faces is 11.92, which reveals that the
simulation makes the probe faces more similar to the gallery faces.

If one gallery face from each subject (82 subjects in the FG-NET
Aging Database) is selected and composes a database, then each
probe face can be recognized by this database. The most common
implementation is to calculate the similarity between a probe face
and each gallery face in the database, then recognize the probe as the
person in the most similar gallery image. Here, the Mahalanobis
Distance is used again as the similarity measure. Also, we use the
same 10 gallery-probe pairs selected from each subject in the aging
simulation experiment. Note that the gallery set and the probe set are
both selected randomly and they do not have intersection. Each time,
the gallery face in one pair from each subject is used to build a
database and the probe face in that pair is used to constitute a test set
corresponding to the database. In total, 10 gallery databases and
10 corresponding probe sets are composed. One face recognition test
is performed on each pair of them. The average recognition rate of
the 10 tests without aging simulation is 14.39 percent. If the probe
face is first simulated by AGES to the age of the gallery face, then the
average recognition rate can be improved to 38.05 percent. Of course,
the assumption that the ages of both the probe and the gallery faces
are known before the recognition is sometimes unsatisfactory. One
possible way to solve this problem is to simulate the whole aging
pattern from the gallery/probe face and recognize the “probe aging
pattern” based on the database of the “gallery aging patterns.”

6 CONCLUSION

This paper proposes an automatic age estimation method named
AGES, which improves our earlier work [5]. It is interesting to note
that, at least under the experimental configuration in this paper,
the performance of AGES is not only significantly better than that
of the state-of-the-art algorithms, but also comparable to that of the
human observers.

The current preprocessing method in AGES relies on many
landmark points in the face images, eventually these landmarks
should be determined by applying automatic landmarking algo-
rithms like [3]. Moreover, the current preprocess does not retain
the information about the outer contour size of the face. However,
face size varies across ages, especially during formative years.
Hence, as future work, taking the size and shape of the face
contour into consideration might significantly improve the
accuracy of AGES, especially for age estimation on children’s faces.

Besides age estimation, AGES can be utilized in other computer
vision tasks. For example, with the ability to simulate facial aging
effects, AGES can be used for face recognition across ages, which has
been tested in the experiment. More generally, pose and illumina-
tion variations are always troublesome in computer vision systems.
Similar to AGES dealing with images at different ages, images under
different pose and illumination conditions can be treated as a whole
(analogous to an aging pattern). This idea has been explored in face
recognition, known as the “Eigen Light-field” [6], [30]. In order to
model the light-field, a “generic training data set” is required in such
works, which contains face images under all possible pose and
illumination conditions. But, this is not always available in reality.
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TABLE 3
MAE of AGES and AGESr in Different Age Ranges

Fig. 6. Typical examples of aging effects simulation by AGES. The ages are

marked at the right-bottom corner of the images.



By the algorithm dealing with missing data proposed in this paper,
the light-field-based approaches can be generalized to the case when
not all pose and illumination variations are included in the training
set. This will be further investigated in future work.

APPENDIX

Proof. Suppose, in iteration i, the training data is xx
ðiÞ
k , the

reconstruction of xx
ðiÞ
k by Wi is ½x̂xðiÞk ðWiÞ�, the reconstruction

error of xx
ðiÞ
k by Wi is "ðxxðiÞk ;WiÞ, and the reconstruction error of

the available features is "aðxxðiÞk ;WiÞ. Note that ½x̂xðiÞk ðWiÞ� and the

data of the next iteration, xx
ðiþ1Þ
k , share the same values at the

positions of missing features, so

"a xx
ðiÞ
k ;Wi

� �
¼ U ½x̂xðiÞk ðWiÞ�; xxðiþ1Þ

k

� �
; ð8Þ

where Uðvv1; vv2Þ denotes the squared euclidean distance

between vv1 and vv2. Consequently, "ai ¼ U , where "ai is the "a

of iteration i and U is the mean value of Uð½x̂xðiÞk ðWiÞ�; xxðiþ1Þ
k Þ. If

xx
ðiþ1Þ
k is also reconstructed by Wi, then

" xx
ðiþ1Þ
k ;Wi

� �
¼U x̂x

ðiþ1Þ
k ðWiÞ

h i
; xx
ðiþ1Þ
k

� �

�U x̂x
ðiÞ
k ðWiÞ

h i
; xx
ðiþ1Þ
k

� � ð9Þ

because the line between ½x̂xðiþ1Þ
k ðWiÞ� and xx

ðiþ1Þ
k is orthogonal to

the subspace spanned by Wi so that they have the minimum

euclidean distance. Consequently, "ðxxðiþ1Þ
k ;WiÞ � U , where

"ðxxðiþ1Þ
k ;WiÞ is the mean reconstruction error of xx

ðiþ1Þ
k by

Wi. After applying PCA on xx
ðiþ1Þ
k , the new transformation

matrix Wiþ1 minimizes the mean reconstruction error, thus

" xx
ðiþ1Þ
k ;Wiþ1

� �
� " xx

ðiþ1Þ
k ;Wi

� �
: ð10Þ

Obviously, "aiþ1 � "ðxx
ðiþ1Þ
k ;Wiþ1Þ. So,

"aiþ1 � " xx
ðiþ1Þ
k ;Wiþ1

� �
� " xx

ðiþ1Þ
k ;Wi

� �
� U ¼ "ai : ð11Þ

Thus, the algorithm will converge to minimize "a. tu
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