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Introduction ﬂ(".
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® Influence of computers, robots and related devices has been
enormously expanded

® Extension and complexity of computer based solutions increase

® Smooth and easy to used interfaces are needed.
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Why is the Recognition of emotions important? -\\—‘(IT

® Emotions are an important part of human lives.

® Emotions affect and influence the behaviour of humans. For Example:
® Their learning process
® Their decision making process
® Their interaction with other humans beings

® Emotions are researched in various scientific disciplines, e. g.:
® Neuroscience
® Psychology
® Cognitive science
® Computer science
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Why is the Recognition of emotions important? -\\J(IT
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(for the field of computer science)

® A way to improve and ease the use of extensive and complex
application in a steady growing diversity of environments

® Try to create solutions that foresees and take into account the [emotional]
state of the human operator.

® A way to test the models proposed by psychology, neuroscience,
cognitive sciences and computer science as well
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What are Emotions? -\\J(IT
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® Emotion from the French word émouvoir.

® This based on the Latin emovere, where e- (variant of ex-) means
“‘without” + movere means “move”.

® Emotion: "a complex psychophysiological experience of an individual’'s
state of mind as interacting with biochemical (internal) and
environmental (external) influences."wyers, bavid ., 2004
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Emotion Theories ﬂ(".
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® A theoretical explanation about emotions began at least with
philosophers like:

® Plato, Aristotle, the stoics (ancient Greece).
® Descartes, Spinoza, Hume developed more sophisticated theories.

® With the refinement of the scientific method, new theories raised and
those tend to be informed with data obtained from empirical research.
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Emotion Theories oy Sl

® Emotions theories also present approaches intended to model the
different emotions and link the data generated by humans.

® According to research in psychology three major approaches can be
distinguished:

® Categorical
® Dimensional
® Appraisal-based

Institute for Anthropomatics, Computer Science
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Categorical approach

® Propose the existence of a small number of emotions
® This emotions are basic and hard-wired in our brain

—> This emotions are universally recognised.ekman, p. (1975)
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Dimensional approach

® A number of researchers showed that in every day interactions people
exhibit non-basic, subtle and rather complex affective states.

B Affective states are not independent from one another; they are related
to one another in a systematic manner

® Most widely used dimensional model:
Circumplex of Affect [russel, 5. a. (1980)]
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Appraisal-based approach -\\-‘(IT

® Emotions are generated through continuous, recursive subjective
evaluation of both own internal state and the state of the outside world.

® How to use the appraisal-based approach for automatic measurement
of affect is an open research question.

11 12.02.2012 Socrates Ponce — Emotion Recognition Institute for Anthropomatics, Computer Science
Department



Ways in which humans express their emotions ﬁ(".

® Emotions trigger a flow of signals (cues) in human beings.

® They can divided in:

® Bio-signals e.g.:
® Galvanic skin response
® Electromyography
m EEG
® Thermal signature

® Audio Signals
® Fundamental frequency
® Mean intensity
® Speech rate

® Visual Signals
® Configuration of certain features
® Movement patterns.
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OA - RVM Regression for Dimensional and \‘(IT
Continuous Emotion Prediction =\l

® Most dominant techniques used in machines learning and computer
vision:
B Support Vector Machines (SVM)
B Relevance Vector Machines (RVM)
® Gaussian Process (GP)

® Many problems expose an inherent dependency amongst the output
dimensions.

® An affective state can be described by a number of latent dimensions.
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Related Work on Dimensional and Continuous \‘(IT
Emotion Prediction '-\

® Works focused on predicting continuous and real values are few.
—>The ones in existence use speech features and following mathematical
models:
® Recurrent neural networks (Long Short-Term Memory) and SVRwalmer, et al. 200]
B SVR, k-NN and a fuzzy logic estimatorianiuan, crimm kroschel, 2008]]

Other related mathematical models:
® Kernel Dependency Estimation (KDE) weston, 2002
® Reformulation of KDE without KPCA (cores, et al. 2005]
® Kernel Ridge Regression (KRR)
® Twin GP model

® Non of these work explore input-output associations and spatio-
temporal dependencies between the output vectors
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Proposed Idea ..\\J(IT
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® RVM regression
® Our goal is to learn the functional

ti=w' o(x;) + e

where:

W ¢; are assumed to be independent Gaussian samples with zero mean and

02 variance.

®m Qisa typically non-linear projection of the input features, Xj

because

® Many problems expose an inherent dependency amongst the output
dimensions

- extends the traditional RVM regression proposing an Output-
Associative RVM (OA-RVM) regression.
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Output-Associative RVM regression -\\A(IT

® OA-RVM regression
We introduce:

ti=w' g, (x5) +u’ gu(yY) + €
where:

a y;" is a vector of multi-dimensional output over a temporal window of
i —v,1+ v]

W X; are called the input features

m Yy are called the output features

® The goal now becomes learning not only the set of weight for the input
features, but also the set of weight for the output features along with
the noise estimate, (¢;)°.
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OA-RVM: Inference -\\J(IT
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® Before any prediction can take place, we to have maximise:

P (tla, ¢, 0%) = /P (tjw,u,0%) P (w,u|a, ()dwdu

® where:
| «, ( are vectors of hyperparameters, that describe the weight distribution of
w, u.
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Output-Associative RVM regression -\\J(IT

B After we infer the desired parameters, the prediction step can be
carried out:

® Given a new input dataX,,y., we want to calculate

where:

m [, contains the weights for the input and output relevance vectors

® The basis matrix for a new set of test points should now contain the
distances from the new test input[output] features to all input[output]
feature relevance vectors
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Experiments ﬁ(".
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® Two types of experiments were carried out:
® Subject-dependent
® Subject-independent

® The Sensitive Artificial Listener (SAL) Database were used

B Segments capturing transitions to an emotional state and back were
generated.

® 61 positive and 73 negative segments were used (aprox. 30 000 video
frames)
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Results: Sparsity

® RVM vs. OA-RVM:

TABLE 1

SUBJECT-DEPENDENT SPARSITY COMPARISON

Valence gy Arousal gy~
RVM  OA-RVM RMSE RVM OA-RVM RMSE
Positive 267 10 0.23 270 12 0.22
Negative 245 10 0.23 244 13 0.36

A smaller set or relevance vectors (RV) implies a less complex
model, with a reduced risk of overfitting

AT

Karlsruhe Institute of Technology

TABLE 11
SUBJECT-INDEPENDENT SPARSITY COMPARISON

Valence py Arousal gy
RVM OA-RVM RMSE RVM OA-RVM RMSE
Positive 485 10 0.2 495 11 0.15
Negative 394 21 0.19 417 29 0.36

A larger window complicates the model an increase the number
of RVs needed.
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Results: Prediction ﬂ(".
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® RVM vs. OA-RVM:

RVM Prediction
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Results: Prediction

OA-RVM Prediction, u=0
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Results: Prediction ﬂ(".
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OA-RVM Prediction, u=4
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Results: Prediction
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® For both dimension (valence and arousal) OA-RVM improves the
prediction results in all cases

TABLE III
SUBJECT-DEPENDENT PREDICTION RESULTS (RMSE).

TABLE 1V
SUBJECT-INDEPENDENT PREDICTION RESULTS (RMSE)

Valence Arousal
POS RVM RVM-OA v RVM RVM-OA v
subjl 0.16 0.15 10 0.13 0.11 10
subj2 0.17 0.13 18 0.14 0.13 5
subj3 0.11 0.09 12 0.10 0.09 18
subj4 0.17 0.15 8 0.23 0.19 18
NEG RVM RVM-0A v RVM RVM-0A v
subjl 0.14 0.10 12 0.30 0.29 14
subj2 0.11 0.09 18 0.37 0.33 9
subj3 0.08 0.07 18 0.22 0.21 18
subj4 0.11 0.10 18 0.48 0.40 12

Valence Arousal
POS SVR RVM RVM-OA v SVR RVM RVM-OA v
subjl 0.21 0.16 0.15 18 0.16 0.16 0.15 18
subj2  0.22 0.26 0.17 18 0.18 0.18 0.14 9
subj3 0.22 0.22 0.22 12 0.17 0.17 0.16 12
subjd  0.19 0.16 0.15 6 0.19 0.14 0.13 18
NEG SVR RVM RVM-OA v SVR RVM RVM-OA v
subjl 0.11 0.10 0.09 12 0.36 0.39 0.35 13
subj2 0.14 0.11 0.09 14 0.37 0.33 0.32 10
subj3 0.10 0.10 0.10 5 0.37 0.40 0.37 18
subjd  0.13 0.11 0.09 18 0.14 0.13 0.13 2

® In accordance with psychological evidence, arousal appears to be more
challenging to model and predict, for the negative class

® Optimal window size appears to be subject and data-dependent.
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conclusions . == el

® OA-RVM augments RVM.

® OA-RVM outperforms both RVM and SVR:
® Using a temporal (output) window.

® Optimal temporal window may vary depending on the data at hand or the
task.

® OA-RVM appears to provide a more sparse model.

® Future work should evaluate the propose model in a larger number of
subjects.
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DI S C u S S I O n Karlsruhe Institute of Technology

® Refinement of emotional models

® Technical difficulties around the proposed models
® Data acquisition in unconstrained environments
® Baseline and ground truth recognition/agreement
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