

Seminar Facial Image Processing and Analysis

Emotion Recognition Lecturer: Sócrates Ponce Karlsruhe, 26. January 2012

Institute for Anthropomatics, Computer Science Department

Overview

- Introduction
 - Why is the Recognition of emotions important?
 - What are Emotions?
 - Emotions Theories
 - Ways in which humans express their emotions
- OA RVM Regression for Dimensional and Continuous Emotion Prediction
 - Related work
 - Proposed idea
 - Experiments
 - Results
- Conclusion

Introduction

- Influence of computers, robots and related devices has been enormously expanded
- Extension and complexity of computer based solutions increase
- Smooth and easy to used interfaces are needed.

Why is the Recognition of emotions important?

- Emotions are an important part of human lives.
- Emotions affect and influence the behaviour of humans. For Example:
 - Their learning process
 - Their decision making process
 - Their interaction with other humans beings
- Emotions are researched in various scientific disciplines, e. g.:
 - Neuroscience
 - Psychology
 - Cognitive science
 - Computer science

Why is the Recognition of emotions important?

(for the field of computer science)

- A way to improve and ease the use of extensive and complex application in a steady growing diversity of environments
 - Try to create solutions that foresees and take into account the [emotional] state of the human operator.
- A way to test the models proposed by psychology, neuroscience, cognitive sciences and computer science as well

What are Emotions?

- Emotion from the French word émouvoir.
 - This based on the Latin *emovere*, where *e* (variant of *ex*-) means "without" + *movere* means "move".
- Emotion: "a complex psychophysiological experience of an individual's state of mind as interacting with biochemical (internal) and environmental (external) influences."[Myers, David G., 2004]

Emotion Theories

- A theoretical explanation about emotions began at least with philosophers like:
 - Plato, Aristotle, the stoics (ancient Greece).
 - Descartes, Spinoza, Hume developed more sophisticated theories.
- With the refinement of the scientific method, new theories raised and those tend to be informed with data obtained from empirical research.

Emotion Theories

- Emotions theories also present approaches intended to model the different emotions and link the data generated by humans.
- According to research in psychology three major approaches can be distinguished:
 - Categorical
 - Dimensional
 - Appraisal-based

Categorical approach

- Propose the existence of a small number of emotions
- This emotions are basic and hard-wired in our brain
 - → This emotions are universally recognised.[Ekman, P. (1975)]

Ekman

Dimensional approach

- A number of researchers showed that in every day interactions people exhibit non-basic, subtle and rather complex affective states.
- Affective states are not independent from one another; they are related to one another in a systematic manner
- Most widely used dimensional model:

Circumplex of Affect [Russel, J. A. (1980)]

V-valence, A-arousal, P-power emotion space

Appraisal-based approach

- Emotions are generated through continuous, recursive subjective evaluation of both own internal state and the state of the outside world.
- How to use the appraisal-based approach for automatic measurement of affect is an open research question.

Ways in which humans express their emotions

- Emotions trigger a flow of signals (cues) in human beings.
- They can divided in:
 - Bio-signals e.g.:
 - Galvanic skin response
 - Electromyography
 - EEG
 - Thermal signature
 - Audio Signals
 - Fundamental frequency
 - Mean intensity
 - Speech rate
 - Visual Signals
 - Configuration of certain features
 - Movement patterns.

OA - RVM Regression for Dimensional and Continuous Emotion Prediction

- Most dominant techniques used in machines learning and computer vision:
 - Support Vector Machines (SVM)
 - Relevance Vector Machines (RVM)
 - Gaussian Process (GP)
- Many problems expose an inherent dependency amongst the output dimensions.
- An affective state can be described by a number of latent dimensions.

Related Work on Dimensional and Continuous Emotion Prediction

- Works focused on predicting continuous and real values are few.
 - →The ones in existence use speech features and following mathematical models:
 - Recurrent neural networks (Long Short-Term Memory) and SVR[Wollmer, et al. 2008]
 - SVR, k-NN and a fuzzy logic estimator[Kanluan, Grimm Kroschel, 2008]]

Other related mathematical models:

- Kernel Dependency Estimation (KDE) [Weston, 2002]
- Reformulation of KDE without KPCA [Cortes, et al. 2005]
- Kernel Ridge Regression (KRR)
- Twin GP model
- Non of these work explore input-output associations and spatiotemporal dependencies between the output vectors

Proposed Idea

- RVM regression
 - Our goal is to learn the functional

$$t_i = \mathbf{w}^T \phi(\mathbf{x_i}) + \epsilon_i$$

where:

- ullet ϵ_i are assumed to be independent Gaussian samples with zero mean and σ^2 variance.
- lacksquare is a typically non-linear projection of the input features, ${f x_i}$

because

- Many problems expose an inherent dependency amongst the output dimensions
 - → extends the traditional RVM regression proposing an Output-Associative RVM (OA-RVM) regression.

Output-Associative RVM regression

OA-RVM regression

We introduce:

$$t_i = \mathbf{w}^T \phi_w(\mathbf{x_i}) + \mathbf{u}^T \phi_u(\mathbf{y_i^v}) + \epsilon_i$$

where:

- \mathbf{y}_{i}^{v} is a vector of multi-dimensional output over a temporal window of [i-v,i+v]
- x_i are called the input features
- y_i^v are called the output features

■ The goal now becomes learning not only the set of weight for the input features, but also the set of weight for the output features along with the noise estimate, $(\epsilon_i)^2$.

OA-RVM: Inference

Before any prediction can take place, we to have maximise:

$$P(\mathbf{t}|\alpha, \zeta, \sigma^2) = \int P(\mathbf{t}|\mathbf{w}, \mathbf{u}, \sigma^2) P(\mathbf{w}, \mathbf{u}|\alpha, \zeta) d\mathbf{w} d\mathbf{u}$$

- where:
 - α, ζ are vectors of hyperparameters, that describe the weight distribution of ${\bf w}, {\bf u}$.

Output-Associative RVM regression

- After we infer the desired parameters, the prediction step can be carried out:
 - lacksquare Given a new input data \mathbf{x}_* , $\mathbf{y}_*^{\mathbf{v}}$, we want to calculate t_*

$$t_* = \mu_{wu}^T \left[\phi_w(\mathbf{x}_*) \middle| \phi_u(\mathbf{y}_*^{\mathbf{v}}) \right]$$

where:

- lacksquare μ_{wu} contains the weights for the input and output relevance vectors
- The basis matrix for a new set of test points should now contain the distances from the new test input[output] features to all input[output] feature relevance vectors

Experiments

- Two types of experiments were carried out:
 - Subject-dependent
 - Subject-independent
- The Sensitive Artificial Listener (SAL) Database were used
 - Segments capturing transitions to an emotional state and back were generated.
 - 61 positive and 73 negative segments were used (aprox. 30 000 video frames)

Results: Sparsity

RVM vs. OA-RVM:

TABLE I
SUBJECT-DEPENDENT SPARSITY COMPARISON

	$Valence_{RV}$				$\operatorname{Arousal}_{RV}$			
Positive Negative	RVM 267 245	OA-RVM 10 10	RMSE 0.23 0.23	RVM 270 244	OA-RVM 12 13	RMSE 0.22 0.36		

TABLE II
SUBJECT-INDEPENDENT SPARSITY COMPARISON

	$Valence_{RV}$			$Arousal_{RV}$			
Positive Negative	RVM 485 394	OA-RVM 10 21	RMSE 0.2 0.19	RVM 495 417	OA-RVM 11 29	RMSE 0.15 0.36	

A smaller set or relevance vectors (RV) implies a less complex model, with a reduced risk of overfitting

A larger window complicates the model an increase the number of RVs needed.

RVM vs. OA-RVM:

 For both dimension (valence and arousal) OA-RVM improves the prediction results in all cases

TABLE III
SUBJECT-DEPENDENT PREDICTION RESULTS (RMSE).

	Valence			Arousal			
POS	RVM	RVM-OA	v	RVM	RVM-OA	v	
subj1	0.16	0.15	10	0.13	0.11	10	
subj2	0.17	0.13	18	0.14	0.13	5	
subj3	0.11	0.09	12	0.10	0.09	18	
subj4	0.17	0.15	8	0.23	0.19	18	
NEG	RVM	RVM-OA	v	RVM	RVM-OA	v	
subj1	0.14	0.10	12	0.30	0.29	14	
subj2	0.11	0.09	18	0.37	0.33	9	
subj3	0.08	0.07	18	0.22	0.21	18	
subj4	0.11	0.10	18	0.48	0.40	12	

TABLE IV
SUBJECT-INDEPENDENT PREDICTION RESULTS (RMSE)

		Valence			Arous			
POS	SVR	RVM	RVM-OA	v	SVR	RVM	RVM-OA	v
subj1	0.21	0.16	0.15	18	0.16	0.16	0.15	18
subj2	0.22	0.26	0.17	18	0.18	0.18	0.14	9
subj3	0.22	0.22	0.22	12	0.17	0.17	0.16	12
subj4	0.19	0.16	0.15	6	0.19	0.14	0.13	18
NEG	SVR	RVM	RVM-OA	v	SVR	RVM	RVM-OA	v
subj1	0.11	0.10	0.09	12	0.36	0.39	0.35	18
subj2	0.14	0.11	0.09	14	0.37	0.33	0.32	10
subj3	0.10	0.10	0.10	5	0.37	0.40	0.37	18
subj4	0.13	0.11	0.09	18	0.14	0.13	0.13	2

- In accordance with psychological evidence, arousal appears to be more challenging to model and predict, for the negative class
- Optimal window size appears to be subject and data-dependent.

Conclusions

- OA-RVM augments RVM.
- OA-RVM outperforms both RVM and SVR:
 - Using a temporal (output) window.
 - Optimal temporal window may vary depending on the data at hand or the task.
- OA-RVM appears to provide a more sparse model.
- Future work should evaluate the propose model in a larger number of subjects.

Discussion

- Refinement of emotional models
- Technical difficulties around the proposed models
- Data acquisition in unconstrained environments
- Baseline and ground truth recognition/agreement