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Motivation 

!   Recognize micro-expressions 
!   Distinguish spontaneous vs. posed expressions 
!   Useful for.. 

!   Police & surveillance 
!   Doctors 
!   Psychology researchers 
!   Teachers, business negotiators, …? 
!   àIn short: lie detection using facial expressions 
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Introduction: Facial expressions 

!   Facial expressions caused by certain emotions 
!   6 basic types of facial expressions (according to Ekman): 

!   Disgust 
!   Anger 
!   Fear 
!   Happiness 
!   Sadness 
!   Surprise 
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Introduction: Micro-Expressions 

!   What are micro-expressions? 
!   Very short expressions (1/3 ~ 1/25 seconds) 
!   Involuntary (concealed or repressed expressions) 
!   Humans are very bad at seeing them 
!   Can be learned easily (to some extent) 

!   Trained humans: 47% accuracy (untrained: ~25%) 
!   Discovery: 

!   Hospital patient with secret suicide intentions fools her doctor 
!   Video recordings reveals micro-expressions of concealed anguish, quickly 

covered up by a smile 
!   Could be avoided with automatic method to detect micro-expressions! 
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Introduction: Micro-expressions 
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Introduction: Posed vs. Spontaneous Expressions 

!   Recently: research shifting from posed expressions to spontaneous 
expressions 

!   Both differ quite strongly 
!   E.g.: Posed smiles: only movement around mouth, real smiles also around 

eyes 
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Introduction 

!   Goal of this research: 
!   Detect and classify micro-expressions 
!   Distinguish posed from spontaneous expressions 
!   Possibly outperform humans 

!   Challenges 
!   Short duration of micro-expressions (limited # of frames) 
!   How to collect realistic data of micro- and spontaneous expressions? 

!   Approach 
!   Complete method including normalization, feature extraction, and 

classification 
!   Use same method for different tasks, train on problem-specific data 
!   Use a cascade-structured algorithm to subdivide tasks 
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A Generic FE Recognition Framework 

!   Subdivide task of facial expression 
recognition 
!   Each subtask easier to handle 
!   3 tasks application-independent 
!   3 tasks application-specific 

!   E.g. 6 basic FE types 
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Overview of Method 
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Overview of Method 
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Active Shape Models (ASM) 
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!   Statistical model for shape of object 
!   Shape model (specifies allowable 

constellations of landmarks) 
!   Profile model (templates for each 

landmark) 
!   Iteratively: 

!   Use template matcher to move 
around landmarks 

!   Adjust shape by  
calculating similarity 
transform 



Institute for Anthropomatics, Computer Vision for 
Human-Computer Interaction Lab, FIPA Group 

12 1/27/12 

Local Weighted Means (LWM) 

!   Using ASM landmarks:  
compute transformation 
from first neutral frame to 
model face: 
 
 

!   Apply same transformation 
to all frames 

!   Effect: spatial 
normalization 
!   Certain facial features 

always lie in same area 
on image 

!   Muscle movement not 
affected 
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Overview of Method 
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Temporal Interpolation Method (TIM) 

!   Problem 1: micro-expressions are very short 
!   E.g. 25fps: 1/25 sec …1/3 sec ~ 1…8 frames 
!   At least 7 frames needed for LBP-TOP feature extraction 

!   Problem 2: Low # frames à histograms statistically unstable 
!   Solution: Interpolate between frames, then sample as wished 

!   May lead to both a larger or smaller number of frames 
!   Generic method to interpolate any kind of feature vectors 
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Temporal Interpolation Method (TIM) 

!   Basic idea: 
!   Interpolate: Map 

feature vectors to 
continuous curve 

!   Invert function 
!   Create feature 

vectors from arbitrary 
position on curve 
(à sampling) 

!   Values for  
# frames: 
10, 20, 25 and  
30 frames / video 
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Overview of Method 
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Local Binary Pattern (LBP) 
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Local Binary Pattern (LBP) 
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LBP on 3 Orthogonal Planes (LBP-TOP) 

!   Extend into temporal domain (i.e., make texture descriptor dynamic) 
!   View video as 3D space 
!   For each pixel, use circle on 3 planes (XY, XT, YT) in the same fashion 
!   Concatenate histograms 
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LBP on 3 Orthogonal Planes (LBP-TOP) 

!   To keep local and temporal context: 
!   Divide into blocks (e.g. 8×8×1, 5×5×1, 8×8×2, 5×5×2, 8x8x3 etc.) 
!   Use each block (=dynamic texture) to calculate LBP-TOP histograms 
!   Concatenate histograms 
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Completed Local Binary Patterns (CLBP-TOP) 
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Overview of Method 
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Classification 

!   Linear Support Vector Machine (SVM) 
!   SVM with polynomial kernel 
!   Multi-Kernel Learning (MKL) 

!   Combine different kernels 
!   Random Forests (RF) 

!   Combine randomized decision trees 
!   Fusion 

!   Majority voting between linear, SVM, RF 

Matthias Sperber – Spontaneous Expressions & Micro-Expressions 



Institute for Anthropomatics, Computer Vision for 
Human-Computer Interaction Lab, FIPA Group 

24 1/27/12 

Evaluation 

!   Experiment Micro-Expressions: 
!   Subjects watch videos that are supposed to induce 1 of basic 6 emotions 
!   Carefully watch clips, but suppress facial expressions 
!   Experimenters try to tell emotion from watching face 
!   Threat of punishment if successful in telling 
!   After experiment: subjects report true emotions 
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Evaluation 

!   Results: 
!   Some results better than human recognition  
!   Random Forest & MKL had best results (depending on task) 
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!   TIM10 yields large performance-boost, 
but more than 10 samples mostly did 
not lead to improvement (sometimes 
even scored below TIM10) 
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Evaluation 

!   Experiment Spontaneous vs Posed: 
!   Subjects watched movie clips inducing the 6 basic emotions 
!   This time: no suppression 
!   Labeled according to subjects’ reported emotions 
!   Afterwards, subjects were asked to pose each emotion twice 
!   Videos recorded with both visual-spectrum- and near-infrared-camera 
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Evaluation 

!   Results: 
!   Near-infrared > visual-spectrum 
!   CLBP-TOP > LBP-TOP for 

near-infrared data (up to 20% better);  
visual-spectrum data: difference  
much smaller 
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Summary 

!   Main contributions 
!   Extend FE research to new tasks 
!   Realistic but small corpora 
!   FE recognition cascade 
!   Method that can solve all subtasks in cascade 
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Discussion & Future Work 

!   Discussion 
!   First experiments that use somewhat realistic data! 
!   Used mostly existing methods, extended to new contexts 
!   Dataset too small à results not very significant 

!   Future work 
!   Make corpora larger & more realistic 
!   Ekman: For lie detection, no single one good cue (micro-expressions etc.) 

exists 
à Several cues must be combined: 
!   Classify micro-expressions (short but full involuntary expressions) 
!   Classify “subtle expressions” (longer but only expression-fragments) 
!   Body language (habits when nervous, …) 
!   Voice characteristics (pitch, speed, ..) 

Matthias Sperber – Spontaneous Expressions & Micro-Expressions 
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Thank you for your attention 

!   Questions?! 

Matthias Sperber – Spontaneous Expressions & Micro-Expressions 



Institute for Anthropomatics, Computer Vision for 
Human-Computer Interaction Lab, FIPA Group 

31 1/27/12 

Appendix: Local Weighted Means (LWM) 

!   Using ASM landmarks: compute transformation from first neutral frame 
to model face: 
 
 

!   Apply same transformation to all frames 
!   This will normalize the expression spatially: certain facial features will 

always lie on the same spot 
!   Mathematically:  

!   Let polynomials     pass over each control point & its (n-1) nearest 
neighbors 

!   Compute weights      for each polynomial, according to distance of its 
control point to (x,y). Set           for non-local control points 

!   For given point (x,y): Compute local weighted mean  

Matthias Sperber – Spontaneous Expressions & Micro-Expressions 
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Linear Classifier 

!   Basic support vector machine (SVM) 
!   Try to separate feature space linearly 

!   Maximizing margin and.. 
!   ..minimizing penalty for off-liers (tradeoff) 

!   During training: normal 
vector w and bias b 
are learned 
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SVM with Kernel Trick 

!   Perform non-linear transformation into different feature space 
!   Certain types of non-linear separation are then possible using a 

standard SVM classifier 
!   Problem: how to know which Kernel to use? 
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MKL 

!   Combine kernels (here: polynomial deg 2 & 6, histogram-intersection) 
!   Train SVM for each kernel 
!   Learn weights for different kernels and combine them 

Matthias Sperber – Spontaneous Expressions & Micro-Expressions 

x 

Feature mapping Φ 

w 

Intermediate representation 

x 

f2 f3 f1 

Φ1 Φ2 
Φ3 

γ1 

w2 w3 

γ2 γ3 

w1 

input 

weighting 

Single-kernel output 

Kernel weighting 

MKL output f (x) = yi ⋅wi ⋅Φi (x)∑

f (x) = w ⋅Φ(x)



Institute for Anthropomatics, Computer Vision for 
Human-Computer Interaction Lab, FIPA Group 

35 1/27/12 

Random Forests 

Matthias Sperber – Spontaneous Expressions & Micro-Expressions 

!   Construct decision trees 
!   Iteratively divide feature space in a way that 

separates the classes the best 



Institute for Anthropomatics, Computer Vision for 
Human-Computer Interaction Lab, FIPA Group 

36 1/27/12 

Random Forests 
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!   Construct decision trees 
!   Iteratively divide feature space in a way that 

separates the classes the best 
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Random Forests 
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!   Construct decision trees 
!   Iteratively divide feature space in a way that 

separates the classes the best 
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Random Forests 

!   Introduce random component to construction 
of trees 
!   Subsets of samples 
!   Randomly disturb separating lines 

!   Combine trees to make output smoother 
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Appendix: Tables (Classify Micro) 
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Appendix: Tables 
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Appendix: Tables (SVP) 
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Appendix: Tables (CLBP-TOP) 
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Appendix: Tables (FED) 
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