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Human Aging Process … 
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Why facial age estimation ? 

Directly inferred from facial appearance 

Real-world applications 

Age Specific HCI   

Children Protection 

Security Control and Surveillance Monitoring 

Multi-cue identification 
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How old is this man on the picture in the middle ? 
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Problems 

Age estimation is even difficult for human 

Different people age differently 

 

 

 

 

 

 

 

Limited number of aging images 
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Related Work 

Anthropometric approach 

Based on measured sizes and proportions on human faces 

Considers only the facial geometry but not texture 

Face image classification in 3 groups (babies, young adults and seniors) 

 

Aging function 

Considers both shape and structure 

Deals with any age 

Does not consider personal and temporal characteristics of aging 
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Aging Pattern 

Definition 1. An aging pattern is a sequence of personal face images 

sorted in time order 

 

 

All face images come from  

the same person 

And are arranged by time 
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Aging Pattern(2) 

Feature Extraction 

Images are transformed into feature vector 

Feature vectors are extracted by 

Active Appearance Model 

 

Missing parts are marked with ‘m‘ 

Available parts are marked with ‘b‘ 
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Feature Extraction 

Narine Kokhlikyan – Age Estimation 

Active Appearance Model 

Requires training set of labeled images 

Appearance model relies on landmark points 

Combines shape and texture variations 

 

, 

-   Vector of appearance parameter 

-  The mean texture 

- The Modes of variations 

-  The mean shape 
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The AGES Algorithm 

AGES - Learning 

Age Estimation 
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AGES – Learning 
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AGES – Missing Faces - Initialization 
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AGES – Learning Algorithm  
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Aging Pattern 

Aging Pattern Subspace 
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AGES – Learning Algorithm  
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Aging Pattern 

Aging Pattern Subspace 
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AGES – Learning Algorithm  
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 Reconstruction 

Missing Faces     Initialization 

Aging Pattern 

Aging Pattern Subspace 
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AGES – Learning Algorithm  
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AGES – Learning Algorithm  
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Missing Faces     Initialization 
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Aging Pattern Subspace 
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AGES - Learning  
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Age Estimation 
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New Test Image 
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Age Estimation(2) 
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Generating aging patterns 
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Age Estimation(3) 
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Age Estimation(4) 
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AGES - Challenges 

Lack of sufficient training data 

The images at the higher ages are especially rare 

Many missing values in aging pattern vector 
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LLD – Learning from Label Distribution 

Relieves the problem of insufficient training samples 

Additional  knowledge        Close ages look quite similar 

Label distribution rather than a single label for each image  

Narine Kokhlikyan – Age Estimation 

Introduction Conclusion Experiments LLD AGES 



Institute for Anthropomatics. Faculty of Informatics 27 18.01.2012 

Different cases of label distribution 
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Single Label Two Labels 

General Case 

The proportion of     in a full class description of the instance )(yP y
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Label Distribution 
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Triangle Distribution Gaussian Distribution 

Typical cases of label distribution 

Leading position 
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LLD – Learning from Label Distribution 

Input: A Trainig set 

 

 

 

Goal: Learn                    as similar as possible to 

The features of image      are extracted by AAM 
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LLD – Learning from Label Distribution 

Similarity measure        Kullback-Leibler divergence 
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LLD – Age Estimation 

Given a new face image 

Calculate 

If expected class label for      is single 

 

Otherwise if multiple labels are allowed 

A threshold is used to select multiple labels 
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Aging Face Databases 

FG-NET 

Face images: 1,002 

Subjects: 82 

Age range: 0 to 69 

Variations: pose, illumination,  

                  expression, etc. 

 

MORPH 

Face images: 1,724 

Subjects: 515 

Age range: 15 to 68 

Variations: pose, illumination, 

    occlusion, etc. 
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Age Range Distribution 
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Compared Methods 

Human A 

 

Human B 
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51 Images from 
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Evaluation Measurements 

Mean Absolute Error(MAE) 

 

 

Indicates the avarage performance of the age estimator 

Cumulative Score 

 

 

Indicates the accurancy of the age estimator 
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Results - MAE 
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FG-NET   -  Leave-One-Person-Out 
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Results – MAE – Different Age Ranges 
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Results – Cumulative Score 
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FG-NET - LOPO MORPH – Test Set 
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Conclusion and Discussion 

AGES       an effective algorithm for learning and age estimation 

AGES Problem      insufficient training data  

LLD relieves the problem of insufficient training data 

AGES and IIS-LLD show better results than the compared approaches 

Sufficient  data      AGES performs better than LLD otherwise LLD is better 

 

Future Work 

Special feature extractor for age estimation 

Voice, hair, gait can be considered 
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AGES – Learning Algorithm  
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AGES – Learning Algorithm  

Initialisation 
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AGES – Learning Algorithm  

Initialization 
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AGES – Learning Algorithm  

Initialization 
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AGES – Learning Algorithm  

Initialization 

 

 

 

Projection 

Estimate   

 

Reconstruction 

Reconstruct 

 

 

PCA 

 

 

Narine Kokhlikyan – Age Estimation 

];[ m

k

m

kx  m

k  -  mean vector 

Apply PCA to get  0W 0and 

)]([)]([ a

ki

a

kk

a

ki xyW 
ky

kx

kWyx  ˆ
m

k

m

k xx ˆ

Apply PCA to get  1iW 1iand 

1 ii

;0i

Repeat until  

reconstruction error <  



Institute for Anthropomatics. Faculty of Informatics 46 18.01.2012 

AGES – Learning Algorithm  

Reconstruction Error 

 

 

 

Our Goal is to find 
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LLD – Learning From Label Distribution 

Similarity measure        Kullback-Leibler divergence 
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LLD – Learning From Label Distribution 

Similarity measure        Kullback-Leibler divergence 

 

 

 

Case 1        Single label 

 

 

Consequently  (1)  can be simplified to the maximum lakelihood criterion 

Case 2        Multi-label (equal probabilities) 

Consequently  (1)  can be simplified to 
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LLD – Learning From Label Distribution 

Case 3        Multiple labels (different probabilities) 
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LLD – Learning From Label Distribution 

Maximum entropy model has the exponential form 
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Different Age Ranges - MAE 
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FG-NET   -  LOPO 


