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Learning with Less (Resources)

EFFICIENT NEURAL
NETWORKS
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® Overview
® Main Metrics and Concerns
u Efficient Building Blocks
B Efficient Networks
® Quantization & Mixed Precision
® Pruning
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Efficient Neural Networks ﬂ(".

® Why do we need efficient neural networks?

Productionization

Training on high-power clusters
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® Large disparity between hardware used for training and inference

Efficient Neural Networks

® Even the average gaming PC only has a quadcore CPU and a Nvidia
GTX 1060 with 6 GB VRAM

® The average notebook/smartphone is even worse than that!

® Alot less powerful than server setups with >100 GB RAM and multiple
GPUs
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Efficient Neural Networks - ‘(IT

® Additional concerns for mobile devices

® Power consumption when running battery-powered

® Heat generation

® Model weight size when downloading over mobile networks and also when
stored on local volume
® The ImageNet-pretrained ResNet-101 weights are already 171 MB!
® Might stop users from downloading and using an app

® Runtime

® Many applications have realtime demands, e.g. processing camera input

® Mobile hardware — especially smartphones — usually has very little computational
resources
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Efficient Neural Networks \‘(IT

® Given these concerns, we can intuitively derive the main metrics that are
used to compare the efficiency of neural networks
® Number of parameters, sometimes given as MB or kB sizes
® Number of floating point calculations, usually given as FLOPs or Multiply-
Adds (sometimes called Multiply-Accumulate or MAC)

® Note that many hardware accelerators can compute a Multiply-Add operation in a
single clock cycle.

® Many researchers consider 1 Multiply-Add = 2 FLOPs. Some papers might measure
this differently however!

® Inference time as duration in seconds or throughput as frames per second
® Energy Efficiency measured in Watt or Joule
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Faster ways to do convolution

EFFICIENT BUILDING BLOCKS
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Efficient Building Blocks A\‘(IT

® Standard convolution: Most commonly a 3x3xD,, filter kernel (h x w x D,,)
® Single spatial position: multiply & add 3x3xD,, values of the input with those of the filter kernel

® Example below: input volume with H,.=W, =7 and D,, channels and a filter with h=w=3 and D,
channels and no padding
® Outcome: hxwxD,,xH_,xW,_, x D, Multiply-Add operations and h x w x D,, x D, weights
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A single filter evaluation at a single spatial position and a full convolution [6]
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Efficient Building Blocks A\‘(IT

® Often h=w for a filter kernel, complexity is therefore quadratic w.r.t. h (or w)

® In terms of computations, h=w=3 is therefore 9 times as expensive as h=w=1!

® Takeaway: 1x1 convolutions are cheap!

® Problem: 1x1 filters lack spatial awareness, a CNN with only 1x1 filters would not perform well.

® But: we can use 1x1 convolution to reduce the input dimension D,, and apply 3x3 filters
afterwards = the total number of 3x3 convolutions is reduced!

3x3 and 1x1 convolution in comparison [6]
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SqueezeNet v1 Q(IT
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1

® 1x1 convolutions extensively used in SqueezeNet v1 [9] E ,
® Basic building block is the "Fire module”

® First "squeeze" input: Reduce number of channels with cheap ‘
1x1 convolutions

® Then "expand" with a combination of 1x1 (cheap) and 3x3 (spatial B
information) filters
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® Concatenate output of 1x1 and 3x3 convolution

® [owers both computation time and parameter count
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Fire module from [5]
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SqueezeNet architecture

o\
12 10.11.2025 Deep Learning for Computer Vision Il: Advanced Topics < cv:hci @KIT



13

Grouped Convolution Q(IT
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® Grouped convolution (sometimes called group convolution)

® First introduced in AlexNet [7] in 2012, at that time more an implementation detail, nowadays
used for speeding up networks

® Main gist: divide input volume into groups. Filters only "work" on their group, in the example
below number of groups g=2.

® Each filter only has 1/g amount of work and parameters
® But each filter also only sees 1/g channels and cannot work on all information
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Grouped convolution [6]
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Depthwise Separable Convolution

® Depthwise convolution is a special case of grouped convolution with g=D,,
® Every filter group only filters 1 channel of the input volume. This is very cheap
computationally and has very few parameters.

® Depthwise separable convolution: depthwise convolution followed by a 1x1 convolution
(1x1 convolution is also also referred to as pointwise convolution)

Depthwise convolution [6]
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Question [5 minutes] AT

® (Reminder: standard convolution: h xw x D, x H_,x W, x D
x w x D;, x D, weights)

Multiply-Add operations and h

out
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® How many Multiply-Add operations and weights do depthwise and pointwise convolutions have? Given input: H,, x W, x
D,, output: H,x W, X D, filter size: h x w x 1 (for depthwise) and 1 x 1 x D, (for pointwise)
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Depthwise Separable Convolution A\‘(IT

® (Reminder: standard convolution: h x w x D,, x H, X W, x D, Multiply-Add
operations and h x w x D;, x D, weights)

® Depthwise part has h x w x D;, x H_, x W, Multiply-Add operations and h x w x D,
weights

® Pointwise part has D,, x H_ X W, X D, Multiply-Add operations and only D,, x D,
weights

® For most inputs/outputs, even the combination of depthwise and pointwise part is more
computationally efficient than a standard convolution

Depthwise convolution [6]
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® MobileNet v1 [9] is mostly based on depthwise separable convolution

® Basic building block is indeed very basic, but has been shown to work decently for
many different tasks

® MobileNet v2 [10] expands on this basic unit and adds skip connections and inverted
residual structures

Table 1. MobileNet Body Architecture

Type / Stride Filter Shape Input Size .
3x3 Depthwise Conv Conv /52 Tx3 %3 %32 754 % 934 X 3 ‘ Add conv 1x1, Linear
Conv dw / sl 3 x 3 x32dw 112 % 112 x 32 M
I Conv /sl 1x 1 x32x64 112 3 112 x 32 f T
BN gcu\ri 'n'jwll ? X ? X gj dme }é? xrélQ [>3<4G4 conv 1x1. Linear
onv /s X X X 20 X 90 X .
Convaw/sl | 3x3x198dw 56 56 x 128 f Dwise 3x3,
| Conv / 51 1x1x128x128 | 56 x 56 x 128 stride=2, Relu6
ReLU Conv dw / 3 x 3 x 128dw 56 x 56 x 128 )
Conv /sl 1 x 1 x 128 x 256 28 x 28 x 128 Dwise 3x3, Relub
I > Conv dw / s1 3% 3 x 256 dw 28 x 28 x 256 T
Conv / sl 1 x 1 x 256 x 256 28 x 28 x 256 T
Conv dw / 3% 3 x 256 dw 28 x 28 x 256
1X1 Conv Conv /sl 1 x 1 x 256 x 512 14 x 14 x 256 C 1x1, Relu6
I o, Com aw/sl | 3x3x512dw T4 14 x 512 gty B
Conv /51 1x1x512x512 | 14x 14 x 512 Conv 1x1, Relué
BN Conv dw / 52 3 x 3 x512dw 14 x 14 x 512 ' )
Conv / sl 1x 1 x512 x 1024 Tx 7512
I Conv dw / s2 3% 3 % 1024 dw Tx7Tx1024
Conv /51 T x 1 1024 % 1094 | 7 %7 x 1024 é @
ReLU Avg Pool / sl Pool 7 x 7 TxT7x 1024
FC/sl1 1024 x 1000 1x1x1024 Stride=1 block Stride=2 block
Softmax / s1 Classifier 1 x 1 x 1000

MobileNet v1 building block Stacked 13 times! MobileNet v2 building blocks
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17 10.11.2025 Deep Learning for Computer Vision Il: Advanced Topics < cv:hci @KIT



18

ShuffleNet AT
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@ ShuffleNet [8] extensively uses grouped convolution ~
® Problem: When only using grouped convolution, information —
of the groups is never mixed (left). A red group filter would only
work on information from previous red filters. v
. . ¥ BN
® Solution: channel shuffle layer (right). Channels
are now mixed so that the next red filter can also consider P \ -
information from the and blue group Tl | e
f&e———Channels———| fs—Channels———X l e
put [ 1 | | l
GConv1 1x1 Conv ‘
Feature I: |—‘ \ Add /
] [TTTTTITT] Qo o

ShuffleNet units
Output |: —‘

Visualization of the grouped convolution problem and its solution
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Efficient Building Blocks — Downsampling i

® For CNNs, computational demand also depends on the size h x w of the input

® Filters have to be evaluated at every spatial position, which is expensive for
large input sizes

® As often h=w, there is an obvious quadratic relationship between number of
computations and the input size

® Thus, a common strategy of efficient neural networks is downsampling fast

® Mostly handled by the top 2 layers ("stem cells")
u Often a normal convolution with stride 2 (MobileNet v1) or a convolution with stride 2
followed by max pooling with stride 2 (SqueezeNet, ShuffleNet)

B The latter reduces the common input size of 224x224 to 56x56 in only 2 layers!
@ This results in only 1/16th of spatial positions w.r.t. the input image

Gv:ha@KlT
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Mixed Precision, Quantization and Pruning

EFFICIENT TRAINING AND
INFERENCE
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Mixed Precision

® Commonly, neural networks are trained with 32-bit floating point (FP32) inputs and
weight parameters

® This ensures a large range of representable numbers at the cost of storage space and
computational power

® Using a smaller data type such as FP16 (half precision) would ensure more lightweight
and more performant models and also faster training!

IEEE 754 32 bit float (single precision)

8 - 23 ]

IEEE 754 16 bit float (half precision)

5 0]

and Mantissa

cv:hci @KIT
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Mixed Precision ﬂ(".
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® Problem: Representable range of FP16 is small, due to 5-bit exponent and 10-bit mantissa
® Gradients below 2-2* are rounded towards O!
® This actually happens quite a lot during training

64 P FP16 Representable range R
32 - i
6 Become zero in FP16 FP16 denorms
8
4
2
1
1/2
14
8
116
1/32
1/64
1/128
1/256
1/512

0 -75-60-45-40 -38 -36-34-32-30 -28-26-24-22-20-18-16-14 -12-10 -8 -6 -4 -2 2 4 6 8 10 1214 16

Percentage of all activation gradient values

log,(magnitude)

Histogram of activation gradient values during the training of Multibox
SSD network [13]
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Mixed Precision - ‘(IT

® Result: Training diverges with FP16 although it would have converged
with a FP32 data type

® Solution: Using a mixed precision approach with both FP16 and FP32
while also scaling the loss to an appropriate range

5.0

—FP32
Mixed Precision, loss scale 1
45 Mixed Precision, loss scale 128
1

Training diverges

R, main

0K 500K 1,000K 1,500K 2,000K
Training Iteration

o\
23 10.11.2025 Deep Learning for Computer Vision Il: Advanced Topics < cv:hci @KIT

ooooooooooooooooo

HHHHH -Computer Interaction



26

Mixed Precision

® Benefits of mixed precision training:

AT
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® Half precision math throughput can be 2x-8x faster than single precision on modern

GPUs

® Weights stored on GPU take less space. Batch size can be increased!
@ Data transfers from/to the GPU are faster
® Results mostly stay the same and can even increase in some cases
® Easy to use in most deep learning frameworks such as PyTorch

Model Baseline | Mixed Precision
AlexNet 56.77% 56.93%
VGG-D 65.40% 65.43%
GoogLeNet (Inception v1) | 68.33% 68.43%
Inception v2 70.03% 70.02%
Inception v3 73.85% 74.13%
Resnet50 75.92% 76.04%

ILSVRC12 classification top-1 accuracy [13]

10.11.2025 Deep Learning for Computer Vision II: Advanced Topics
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Pruning e e B

® Pruning: removing redundancy/low value information from the network
® Pruning starts with a "bigger/heavier" network and tries to reduce the size

® Objective: Eliminate neurons or whole filters (in a CNN) while maintaining the metric
(e.g. accuracy)

® Can help to remove e.g. multiple filters that learned (almost) the same feature like edge
detection or color features

® Redundancy is actually quite common in NNs: Think about training with dropout, where
often 50% of the values are randomly zeroed

o\
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Pruning
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® There is not a singular pruning strategy that always works. Many different approaches can achieve a good

pruning ratio

® However, a common setup is [17]:
® Find unimportant filters according to some metric

Remove filters and adjust the filters of the subsequent layer

0
® Finetune to "repair" the damage
® Repeat until the target pruning percentage is achieved

10.11.2025

input of
layer i

Original
Model

Pruned
Model

Fine-tuned
Model

I O
@ﬁne-tunmg
—
e

filters of input of
layer i layer i+1
 I— lf
£ i:i_’i_’ff!‘n |:>|
7 \

Deep Learning for Computer Vision II: Advanced Topics

filters of input of
layer i+1 layer i+2
—yi—

Subsequent filters have to

e == T |
prune weak filters / be adj USted
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® How to determine which filter to remove?
® Common strategies and metrics:

Sum of absolute weight values in a filter. Small weights tend to produce weak activations and do not contribute
much. £, or {, norms are commonly used.

Average Percentage of Zeros in a filter. Considers the sparsity of a filter, many zeros = information loss

Phrasing it as an optimization problem. [17] tries to find a filter that affects the output of the following layer the least,
removes it and finetunes the network.

[18] uses an iterativ pruning approach, temporarily removing filters while monitoring the sensitivity metric of a
detection task. Filters leading to the smallest drop are removed. No finetuning needed after every step.

® Differences in pruning setups:

lterative vs. one-shot methods: Iterative setups only remove a small amount of filters per step.
Finetuning: lterative methods often retrain after every pruning step, others only at the end.

Structured vs. Non-structured pruning: Structured pruning removes whole filters, non-structured removes single
weights to induce sparsity. This often requires special hard- or software to handle.

Global vs. Local pruning: Global pruning considers all filters, local e.g. only a single layer.
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Constellations in Efficient Networks A\‘(IT

Continualjlearning Representation Learning : Interpretability

ised Learning

Visual in-context legrning Vision andlLanguage

Generative Models
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. ) _ | Lenoie oare™ ((\Q\e‘/*\\l Visual Transformers
Semi-supervised Learning carefl! ° amete! £
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- N Y 2 .
Fine-tuning <% Interactive Segmentation
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PARAMETER-EFFICIENT
FINE-TUNING

o\
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Introduction to Parameter-Efficient Fine-Tuning (PEFT)

® LLMs have a lot of weights = Fine-tuning is expensive

® More compute —

10.11.2025

H100
A100
V100
A10G

T4

RTX 4080

Deep Learning for Computer Vision II: Advanced Topics

large and multiple GPUs
B File size — Checkpoints (GPT-3 — 800 GB)

lﬂ-

Enterprise
Enterprise
Enterprise
Enterprise
Enterprise
Consumer

12.29
5.12
3.90
2.03
0.98
N/A

80
32
24
16
16
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Introduction to Parameter-Efficient Fine-Tuning (PEFT) &= 2%

® Avoid tuning the whole model
® Fine-tune only small subset of the model parameters
® Allows fine-tuning large models on consumer GPUs

a Difference between full fine-tuning and PEFT
® Pros (PEFT): computational and storage efficiency, and less prone to catastrophic forgetting

N New trainable

e Temp memory layers
- N Less prone to
4 \ Forward catastrophic forgetting
Activations
> 12-20x

Gradients weights
~ Other
O - components
Optimizer states -
i et Trainable
Trainable A weights
Weights 2 : F Weiaht
- LLM with additional L, rozen Vveignts ﬁé

Full fine-tuning layers for PEFT
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Recap: Transformer Models [l [2] Q(IT

p F 3 KT
/_’(Add& Layer Norm) x L ) Attn(Q, K, V) = Softmax( Q
¥ Vg

. MHA (z) = Concat(heady, - - - ,heady,)W,, head; = Attn(xW", zw,V W), x € Ra

L ( Feed Forward )

1%

A
/—{Add&Layer Norm ) FEN(x) = ReLU(xW; + b;) W5 + by
X
4 ( Atenion ) R
| |
) K v
Wq Wk |‘/‘/v
| | |
Hidden States . W(Z) W("") W(z) c Rdth
L \_ Multl-Heay q » Wk »¥Wo
h / Wo c RdXd
-:I: Wl ERdde,Wz ERded
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PARTIAL FINE-TUNING

o\
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Question [5 minutes] ﬂ(".

® Partial Fine-tuning
® Fine-tune part of the layers (usually the last ones)

® \Why could this be a potential problem for large domain shifts in inference?

Accuracy: 54% Accuracy: 20%

c B _s o
o el

.o‘\
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Partial Fine-tuning ﬂ(".
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® Partial Fine-tuning
® Fine-tune part of the layers (usually the last ones)
® Can be considered as PEFT

# Does not mitigate large domain shifts
® Adapters, Prompt Tuning, Prefix Tuning, and LoRA are better in practice
® Adapt representation at different levels in the model
® E.g. adapt low-level features in large appearance shifts

Intermediate Final

Neural

Network Dog
Classifier » -

.o‘\
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ADAPTERS
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Adapters [2] [3] ﬂ(".

p ¥ KT
/_’(Add& Layer Norm) x L ) JALIJIJII(C?7 1"(’j V) = softmax( ?/@

L Adapter ! _

ey MHA (z) = Concat(heady, - - - ,heady,)W,, head; = Attn(xW", zw,V W), x € Ra
L ( Feed Forward )
4
/—{Add&Layer Norm ) FEN(x) = ReLU(xW; + b;) W5 + by
...... S

¢ Adapter | Adapter

1%

h — h+ f(hWaoun) Wap

| |
Q K |4
W Wk |‘/Vv
I I I

Hidden States

L \_ MuIti-Heay \

=]

) Wéi)’ ‘/1/}5’!‘»)3 ngﬂ c Rdxdh
W, ¢ Réxd
-:I: Wl EIRdde,WQ ERded
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® Methodology
® Adapt the pre-trained model at multiple levels

® Insert adapter modules between pre-trained layers
® Small set of additional parameters
® Fine-tune only the task-specific adapter modules

o\
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Adapters [2: 3]

® Adds “corrections” to the learned representations of the pre-trained model ...}/ h'=h 8k
® Pre-trained model is unchanged | Adapter 4_}’ :
® New tasks > New adapters! A RS

® Reduced storage and training cost compared to fine-tuning
® Only need to store the pre-trained model and the small task-specific adapters

Feed-Forward

Up-Project

Fine_tuning Adapter PEFT E Nonlinlearity

: Pre-trained :
Pre-trained :

Model ' Feed-Forward '

M Od el : D . 1

' own-Project !

| t a

1 Hidden
TaS k 1 TaS k 2 : }4_ 1 Representation

Adapter 1 Adapter 2 Adapter 3 R -

F:\r/]lijgln?d F:\r/]lijglng d F:\r/]lejurgd Pre-trained Pre-trained Pre-trained
oce Model Model Model
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Adapters — Example for 2D - 3D Segmentation [“] ﬂ(IT

® Given a model trained to segment cats and dogs (and other standard classes)

Background

Dog Cat

.o‘\
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Adapters — Example for 2D - 3D Segmentation [“] ﬂ(IT

® Given a model trained to segment cats and dogs (and other standard classes)
® Adapt it to segment volumetric brain tumors

Background

Dog Cat

'o‘\
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Adapters — Example for 2D - 3D Segmentation [“] ﬂ(".

® Segment Anything Model (SAM) U]

® Pre-trained on a large-scale 2D dataset of natural images
® Works well on out-of-domain data when fine-tuned

® However:
® Can it be applied to 3D medical data”

® Usually applied slice by slice (axial)
® Extremely poor results

® No spatial coherence in predictions
® - Better: 3D convolutions!

sagittal coronal

o\
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Adapters — Example for 2D - 3D Segmentation [“] ﬂ(".

® Adapters at multiple locations

Prediction

e

Positional embedding I [ <
................................................................................................................................................ o
B HxWxC : . e NP = X
+ — DxHXW xC ] | |eli &1 || | |l ile| el o z
: s : : : : : : o
5 : : $ : : : : : 4
Lo . 2118 E| Bl B[ IZL ilB| |8 3 2
= L e HELIB LB LB =i |B LB || B LB | S A=
Raw image HEANE HE B E HE N E I E N E E a
. i|o i ilo A P : o}
Patch embedding =1 ali = a 5| &) S - o Q
semsessessnssasstsassntassesanansane, C o _nc.) o _g : o g : o % % Q
[ 1x14x14 | i 2 AR EAE al =] all@ 21| IE o
.’.’.'- k : =] 18] olle ol |® al [ -
PR  —1— U UU OU 00U
R s P I R — round trut
Image patches DHW 5% 2’3 &(, 5 .
o : : :

Seisssssmeenccessett®  “tecsssisessessseess S o Nt Point prompt
% Frozen & Tuned
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Adapters — Example for 2D - 3D Segmentation [“] S(IT

® Adapters at multiple locations
® Positional embeddings - Extend lookup table with depth
® Patch embeddings - Use pre-trained 14x14 2D convolution as 1x14x14 3D convolution
® Extend with 14x1x1 depth-wise convolution to approximate 14x14x14 3D convolution

Raw image l

l Patch embedding

[‘& 1x14x14 ]

Ay Ay A A
"!’.'- 'i. & 14x1x1 ]H ——

Image patches *%4cecssccesessessccssssssescacassnsas® 4 DHLV
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Adapters — Example for 2D = 3D Segmentatlon [4] S(IT

® Adapters at multiple locations o j: ;E fb o
m Spatial Adapter SNEHNSHE ?" g;_%* o

® Additional depth-wise 3D convolution before up-projection g _:,, ; - g

® Adapters can learn 3D spatial information U e
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Adapters — Example for 2D - 3D Segmentation [“] Q(IT

® Adapters at multiple locations
® Mask Decoder and Point Encoder are trained from scratch with 3D convolutions
® They are already lightweight and have few parameters

] Prediction
(R x&
Yo
3 =
) )
= wn
o =~
—_— »| Q.
o :
o o
o Q.
o 1)
) -
®
| —
r 3

Point prompt
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PREFIX TUNING
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Karlsruhe Institute of Technology

Prefix Tuning 5] ﬂ(".

F 3

r \ QK"
/—’(Add&Layer Norm) x L Attn(Q, K, V) = Softmax( )V
¥ Vg
. MHA (z) = Concat(head,, - - - , heady,)W,, Heeres= Ly, € RY
L ( Feed Forward )
4 head; = Attn(qu(’i),concat(P,éi), a:W,ii)),concat(Pf), xW ) x € R4
/—{Add & Layer NormJ
! FFN(z) = ReLU(zW,; + by)W> + b,
~ =
( Attention ) x Prefix Tuning
[ . I
Q| BIK| BV ]
P,
W, Wi . - 5
| | |
Hidden States (4) (4) (4)
L\ Multi-Head / I We ' W, Wy e R
. J P., P, € R~ W, ¢ Rixd
-:t: Wl ERdde,Wz ERded
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Prefix Tuning 19 e e

® Only update the concatenated prefixes

® Intuition: Let the model learn how to “steer” itself
® Prefixes encode task-specific knowledge
® Why not learn which prompt works best (prompt engineering)?
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Prefix Tuning 5] ﬂ(".

Karlsruhe Institute of Technology

® Why not learn which prompt works best (prompt engineering)?

® Optimization over discrete space is not flexible
® Solution is forced to choose words from the vocabulary
® Model is only adapted at the input layer

/ /
wy,we = argmax [E;,[log Popr2(y | wi,ws, )]
w’ ,w; € Vocab

Optimal prompts (prompt engineering)
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Prefix Tuning 5] ﬂ(".

Karlsruhe Institute of Technology

® Why not learn which prompt works best (prompt engineering)?

® Optimization over discrete space is not flexible
® Solution is forced to choose words from the vocabulary
® Model is only adapted at the input layer

/ /
wy,we = argmax [E;,[log Popr2(y | wi,ws, )]
w’ ,w; € Vocab

Optimal prompts (prompt engineering)

® Prefix tuning:

® Optimization over continuous variables directly with gradient descent
® Solution is flexible and task-specific
® Model is adapted in all layers

p1,p2 = argmax E, ,[log Popra(y | P, D5, )]
pa ’p/2 eRle

o\
55 November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics < cv:hci @KIT

Computer Vision for
Human-Computer Interaction



Prefix Tuning [

AT

Karlsruhe Institute of Technology

® Adds additional context to the learned representations in the sequence

® Pre-trained model is unchanged
® New tasks - New prefixes!

® Very similar to adapters but usually requires fewer parameters

Fine-tuning

Pre-trained

Model

Fine-tuned Fine-tuned

Fine-tuned

Model 1 Model 2 Model 3
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Prefix Tuning PEFT

Pre-trained

Model

Prefixes 2 Prefixes 3

Prefixes 1

Pre-trained Pre-trained
Model

Pre-trained
Model
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PROMPT TUNING
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Prompt Tuning (soft prompts) ['0 ﬂ(".

p F 3 KT
/_’(Add& Layer Norm) x L ) Attn(Q, K, V) = Softmax( Q
¥ Vg

. MHA (z) = Concat(head, - - - ,heady,)W,, head; = Attn(aW}", aw," W), i

L ( Feed Forward )
4

/_{Add&LayerNormJ FFN(SB) = ReLU(a:Wl + bl)Wg + bg
3

1%

r = concat(z, p) € R4

- ( Attelntion ) o

| ]
Q K vV
W, W, W,
| | |
Hidden States (z) (%) (3)
L \_ Multi-Head / W, " W, Wy € R4X4n
\ / W, € Rixd
concat(x, p) W, € R%%dm W, ¢ Ribmxd
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Prompt Tuning (soft prompts) [1°] ST

Karlsruhe Institute of Technology

® Adds additional context to the inputs in the sequence
® Instead of the intermediate representations
® Pre-trained model is unchanged
® Similar to prefix tuning but only at input level
® Soft prompts = Continuous values Prompt Tuning PEFT

Fine-tuning Pre-trained
Model

Soft prompt 1 | Soft prompt 2 | Soft prompt 3

Pre-trained Pre-trained Pre-trained
Model Model

Pre-trained

Fine-tuned Fine-tuned

Fine-tuned

Model 1 Model 2 Model 3
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LOW RANK ADAPTATION (LORA)
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AT

Low Rank Adaptation (LoRA) 8]

p F 3 KT
—{ Add & Layer Norm ) XL | Attn(Q, K,V) = softmax(Q \'%4
7 vy,

MHA (z) = Concat(heady, - - - ,heady,)W,, head; = Attn(xW", zw,V W), x € R4

L ( Feed Forward )

3
/—{Add&Layer Norm ) FEN(x) = ReLU(xW; + b;) W5 + by
3

(i . ; (i) (2)
qu) ER AW((;) ~ W((]’) 4 Wq—up : Wq—(lou'n

~ = ) _ . _ | |
( Atenion ) w4 AW ~ w4 W;fl“,,- wo
| |
Q K |4
D @
Wi LoRA} [Wi[i LoRA} W, LoRA
I "[" I --]-- I () (7) dxdy, ; ; :
Hidden States L a Wq A W}" €R } Wél)’ W;S)a ngz) c ]Rdth
N \_ Multi-Heay ) " ‘-/V((;lw)1 ngzup e Rdxr W, € Rdxd
w ) w o) c grxdn W € R&%dm W, ¢ Rdmxd

m g—down? k—down

( cv:hci @KIT
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Low Rank Adaptation (LoRA) 8] ﬂ(".

® Intuition behind LoRA
® Pre-trained models already have good features LoRA

® Gradient updates are sparse on new tasks
® The model has only a little to learn to adapt to the new task
® The “update matrices” AW, AW\’ have an inherently low rank

® Reparameterization of update matrices

. AW{I) AW(I) Rdth W + AW + W((I UI) Wt(Yl)dou m
. Downscale W own’ W(L) own < RTth 7
3 e (7) e 1 W + AW( ~ W )+ WA up Wi‘ldouvn
m Upscale:w.”,, . W}’ up € R
® Low-rank r << min(dy,d)
dh T W( i) Wé )’ W Rdxdh
d |
. h A W(l) A W(’) = Rdth
~ d x (7) dxr
Wq up? Wk up €R
(%) (2) rxdp i rxd
AW((;)- AWS) e R4xdn Wc(l)up Wgu g up € Rdxr Wq down? Wk down € R™% Wf(J }dow'n W&;ldouvn cR Xl
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Low Rank Adaptation (LoRA) 8] A\‘(IT

@ Reparameterization of update matrices
® During inference - Just add the update matrices to the pre-trained model

W W+ w® @

g—up q—down

k—up k—down

® No additional parameters - No latency
® Adapters and Prefix tuning require additional parameters
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Low Rank Adaptation (LoRA) [ ﬂ(".

@ Reparameterization of update matrices
® During inference - Just add the update matrices to the pre-trained model
® Update matrices for different tasks can be combined by addition (Example: DreamBooth!®I)

“Dog” LoRA update matrices “Toy” LoRA update matrices “Dog” + “Toy” LoRA update matrices
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COMPARISON OF PEFT
APPROACHES
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Comparison of Fine-tuning Approaches - ‘(IT

m Full fine-tuning ®PEFT
® Pros = Pros

® Computationally efficient: only a

" Completely adapts model to the small portion of the parameters is

new task — best performance

: updated
given enough data m Storage efficient
® Cons @ Fast training on consumer GPUs

® Catastrophic forgetting as many ® Cons

parameters are updated ® Requires careful engineering for a
@ Computationally infeasible for specific task

large models ® Where to put adapters
® Storage inefficient ® How to setrin LoRA
® Slow training ® How large should the prefix be

in Prefix tuning, etc.
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Comparison of Fine-tuning Approaches

® Adapters and Prefix and Prompt
Tuning
® Pros

@ Can “transform” the model to fit
another domain

® Example: 2D - 3D inputs

m Cons
® Inference latency

® Adapter and additional prefix
parameters make the model
larger

® Often not parallelizable
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® LoRA

® Pros

® No latency — just add the learned
weights to the pre-trained model
during inference

® Usually better performant

® Cons

® Model architecture stays the
same - Cannot be applied on
domains from other dimensions
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Conclusion: Parameter-Efficient Fine-Tuning \‘(IT

® PEFT allows to train huge models on consumer GPUs with little
performance loss

® Different ways to achieve this:

a Adapters, LoRA, Prefix and Prompt tuning, Partial Fine-tuning, Full Fine-
tuning

® Choice depends on the task at hand
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Constellations in Efficient Networks A\‘(IT

Continualjlearning Representation Learning = Interpretability

ised Learning

Visual in-context learning Vision a 'anguage
5
ke =
Generative Models_ ~
”
& B~
‘QG(QQQ‘\O
\O \6 \-\0\0

(5]
. 3 . O (2 ”. % o)
Semi-supervised Learning ,\@;\@‘;@0‘“, 2 carefll Srameter®
5 ¢)

of xra‘mab\ef — - Efficient Networks
— K

Visual Transformers

o >
Parameter-efficient

Fine-tuning Interactive Segmentation
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