
KIT – The Research University in the Helmholtz Association www.kit.edu

Deep Learning for Computer Vision II: Advanced Topics

Efficient Networks and Parameter-Efficient Fine-Tuning (PEFT)
(held by Prof. Rainer Stiefelhagen, Zdravko Marinov)

Deep Learning for Computer Vision II: Advanced Topics

Content

Efficient Neural Networks

Main Metrics and Concerns

Efficient Building Blocks

Efficient Networks

Quantization & Mixed Precision

Pruning

Introduction to Parameter Efficient Fine-Tuning (PEFT)
Adapter

Prefix Tuning

Prompt Tuning

Low Rank Adaptation (LoRA)

10.11.20252

Deep Learning for Computer Vision II: Advanced Topics

EFFICIENT NEURAL
NETWORKS

Learning with Less (Resources)

10.11.20253

Deep Learning for Computer Vision II: Advanced Topics

Efficient Neural Networks

Overview

Main Metrics and Concerns

Efficient Building Blocks

Efficient Networks

Quantization & Mixed Precision

Pruning

10.11.20254

Deep Learning for Computer Vision II: Advanced Topics

Efficient Neural Networks

Why do we need efficient neural networks?

10.11.20255

Training on high-power clusters Inference on low-power device

Productionization

Deep Learning for Computer Vision II: Advanced Topics

Efficient Neural Networks

10.11.20256

Large disparity between hardware used for training and inference

Even the average gaming PC only has a quadcore CPU and a Nvidia
GTX 1060 with 6 GB VRAM

The average notebook/smartphone is even worse than that!

A lot less powerful than server setups with >100 GB RAM and multiple
GPUs

Deep Learning for Computer Vision II: Advanced Topics

Efficient Neural Networks

Additional concerns for mobile devices

Power consumption when running battery-powered

Heat generation

Model weight size when downloading over mobile networks and also when
stored on local volume

The ImageNet-pretrained ResNet-101 weights are already 171 MB!

Might stop users from downloading and using an app

Runtime

Many applications have realtime demands, e.g. processing camera input

Mobile hardware – especially smartphones – usually has very little computational
resources

10.11.20257

Deep Learning for Computer Vision II: Advanced Topics

Efficient Neural Networks

Given these concerns, we can intuitively derive the main metrics that are
used to compare the efficiency of neural networks

Number of parameters, sometimes given as MB or kB sizes

Number of floating point calculations, usually given as FLOPs or Multiply-
Adds (sometimes called Multiply-Accumulate or MAC)

Note that many hardware accelerators can compute a Multiply-Add operation in a
single clock cycle.

Many researchers consider 1 Multiply-Add = 2 FLOPs. Some papers might measure
this differently however!

Inference time as duration in seconds or throughput as frames per second

Energy Efficiency measured in Watt or Joule

10.11.20258

Deep Learning for Computer Vision II: Advanced Topics

EFFICIENT BUILDING BLOCKS
Faster ways to do convolution

10.11.20259

Deep Learning for Computer Vision II: Advanced Topics

Efficient Building Blocks

Standard convolution: Most commonly a 3x3xDin filter kernel (h x w x Din)

Single spatial position: multiply & add 3x3xDin values of the input with those of the filter kernel

Example below: input volume with Hin=Win=7 and Din channels and a filter with h=w=3 and Din
channels and no padding

Outcome: h x w x Din x Hout x Wout x Dout Multiply-Add operations and h x w x Din x Dout weights

10.11.202510

A single filter evaluation at a single spatial position and a full convolution [6]

Deep Learning for Computer Vision II: Advanced Topics

Efficient Building Blocks

Often h=w for a filter kernel, complexity is therefore quadratic w.r.t. h (or w)

In terms of computations, h=w=3 is therefore 9 times as expensive as h=w=1!

Takeaway: 1x1 convolutions are cheap!

Problem: 1x1 filters lack spatial awareness, a CNN with only 1x1 filters would not perform well.

But: we can use 1x1 convolution to reduce the input dimension Din and apply 3x3 filters
afterwards → the total number of 3x3 convolutions is reduced!

10.11.202511

3x3 and 1x1 convolution in comparison [6]

Deep Learning for Computer Vision II: Advanced Topics

SqueezeNet v1

1x1 convolutions extensively used in SqueezeNet v1 [5]

Basic building block is the "Fire module"

First "squeeze" input: Reduce number of channels with cheap
1x1 convolutions

Then "expand" with a combination of 1x1 (cheap) and 3x3 (spatial
information) filters

Concatenate output of 1x1 and 3x3 convolution

Lowers both computation time and parameter count

10.11.202512

Fire module from [5]

SqueezeNet architecture

Deep Learning for Computer Vision II: Advanced Topics

Grouped Convolution

10.11.202513

Grouped convolution [6]

Grouped convolution (sometimes called group convolution)

First introduced in AlexNet [7] in 2012, at that time more an implementation detail, nowadays
used for speeding up networks

Main gist: divide input volume into groups. Filters only "work" on their group, in the example
below number of groups g=2.

Each filter only has 1/g amount of work and parameters

But each filter also only sees 1/g channels and cannot work on all information

Group 1

Group 2

Deep Learning for Computer Vision II: Advanced Topics

Depthwise Separable Convolution

Depthwise convolution is a special case of grouped convolution with g=Din

Every filter group only filters 1 channel of the input volume. This is very cheap
computationally and has very few parameters.

Depthwise separable convolution: depthwise convolution followed by a 1x1 convolution
(1x1 convolution is also also referred to as pointwise convolution)

10.11.202514

Depthwise convolution [6] Pointwise convolution [6]

Deep Learning for Computer Vision II: Advanced Topics

Question [5 minutes]

(Reminder: standard convolution: h x w x Din x Hout x Wout x Dout Multiply-Add operations and h
x w x Din x Dout weights)

How many Multiply-Add operations and weights do depthwise and pointwise convolutions have? Given input: Hin x Win x
Din output: Hout x Wout x Dout filter size: h x w x 1 (for depthwise) and 1 x 1 x Din (for pointwise)

10.11.202515

Depthwise convolution Pointwise convolution

Standard convolution

Deep Learning for Computer Vision II: Advanced Topics

Depthwise Separable Convolution

(Reminder: standard convolution: h x w x Din x Hout x Wout x Dout Multiply-Add
operations and h x w x Din x Dout weights)

Depthwise part has h x w x Din x Hout x Wout Multiply-Add operations and h x w x Din
weights

Pointwise part has Din x Hout x Wout x Dout Multiply-Add operations and only Din x Dout
weights

For most inputs/outputs, even the combination of depthwise and pointwise part is more
computationally efficient than a standard convolution

10.11.202516

Depthwise convolution [6] Pointwise convolution

Deep Learning for Computer Vision II: Advanced Topics

MobileNets

MobileNet v1 [9] is mostly based on depthwise separable convolution

Basic building block is indeed very basic, but has been shown to work decently for
many different tasks

MobileNet v2 [10] expands on this basic unit and adds skip connections and inverted
residual structures

10.11.202517

MobileNet v1 building block MobileNet v2 building blocksStacked 13 times!

Deep Learning for Computer Vision II: Advanced Topics

ShuffleNet

ShuffleNet [8] extensively uses grouped convolution

Problem: When only using grouped convolution, information
of the groups is never mixed (left). A red group filter would only
work on information from previous red filters.

Solution: channel shuffle layer (right). Channels
are now mixed so that the next red filter can also consider
information from the green and blue group

10.11.202518

Visualization of the grouped convolution problem and its solution

ShuffleNet units

Deep Learning for Computer Vision II: Advanced Topics

Efficient Building Blocks – Downsampling

For CNNs, computational demand also depends on the size h x w of the input

Filters have to be evaluated at every spatial position, which is expensive for
large input sizes

As often h=w, there is an obvious quadratic relationship between number of
computations and the input size

Thus, a common strategy of efficient neural networks is downsampling fast

Mostly handled by the top 2 layers ("stem cells")

Often a normal convolution with stride 2 (MobileNet v1) or a convolution with stride 2
followed by max pooling with stride 2 (SqueezeNet, ShuffleNet)

The latter reduces the common input size of 224x224 to 56x56 in only 2 layers!

This results in only 1/16th of spatial positions w.r.t. the input image

10.11.202519

Deep Learning for Computer Vision II: Advanced Topics

EFFICIENT TRAINING AND
INFERENCE

Mixed Precision, Quantization and Pruning

10.11.202520

Deep Learning for Computer Vision II: Advanced Topics

Mixed Precision

Commonly, neural networks are trained with 32-bit floating point (FP32) inputs and
weight parameters

This ensures a large range of representable numbers at the cost of storage space and
computational power

Using a smaller data type such as FP16 (half precision) would ensure more lightweight
and more performant models and also faster training!

10.11.202521

1 8 23

1 5 10

IEEE 754 32 bit float (single precision)

IEEE 754 16 bit float (half precision)

Sign, Exponent and Mantissa

Deep Learning for Computer Vision II: Advanced Topics

Mixed Precision

Problem: Representable range of FP16 is small, due to 5-bit exponent and 10-bit mantissa

Gradients below 2-24 are rounded towards 0!

This actually happens quite a lot during training

10.11.202522

Histogram of activation gradient values during the training of Multibox

SSD network [13]

Deep Learning for Computer Vision II: Advanced Topics

Mixed Precision

Result: Training diverges with FP16 although it would have converged
with a FP32 data type

Solution: Using a mixed precision approach with both FP16 and FP32
while also scaling the loss to an appropriate range

10.11.202523

Image from https://docs.nvidia.com/deeplearning/performance/mixed-precision-

training/graphics/training-iteration.png

Training diverges

Deep Learning for Computer Vision II: Advanced Topics

Mixed Precision

Benefits of mixed precision training:

Half precision math throughput can be 2x-8x faster than single precision on modern
GPUs

Weights stored on GPU take less space. Batch size can be increased!

Data transfers from/to the GPU are faster

Results mostly stay the same and can even increase in some cases

Easy to use in most deep learning frameworks such as PyTorch

10.11.202526

ILSVRC12 classification top-1 accuracy [13]

Deep Learning for Computer Vision II: Advanced Topics

Pruning

Pruning: removing redundancy/low value information from the network

Pruning starts with a "bigger/heavier" network and tries to reduce the size

Objective: Eliminate neurons or whole filters (in a CNN) while maintaining the metric
(e.g. accuracy)

Can help to remove e.g. multiple filters that learned (almost) the same feature like edge
detection or color features

Redundancy is actually quite common in NNs: Think about training with dropout, where
often 50% of the values are randomly zeroed

10.11.202529

Deep Learning for Computer Vision II: Advanced Topics

Pruning

There is not a singular pruning strategy that always works. Many different approaches can achieve a good
pruning ratio

However, a common setup is [17]:

Find unimportant filters according to some metric

Remove filters and adjust the filters of the subsequent layer

Finetune to "repair" the damage

Repeat until the target pruning percentage is achieved

10.11.202530

Subsequent filters have to

be adjusted

Deep Learning for Computer Vision II: Advanced Topics

Pruning

How to determine which filter to remove?

Common strategies and metrics:
Sum of absolute weight values in a filter. Small weights tend to produce weak activations and do not contribute
much. ℓ1 or ℓ2 norms are commonly used.

Average Percentage of Zeros in a filter. Considers the sparsity of a filter, many zeros = information loss

Phrasing it as an optimization problem. [17] tries to find a filter that affects the output of the following layer the least,
removes it and finetunes the network.

[18] uses an iterativ pruning approach, temporarily removing filters while monitoring the sensitivity metric of a
detection task. Filters leading to the smallest drop are removed. No finetuning needed after every step.

Differences in pruning setups:
Iterative vs. one-shot methods: Iterative setups only remove a small amount of filters per step.

Finetuning: Iterative methods often retrain after every pruning step, others only at the end.

Structured vs. Non-structured pruning: Structured pruning removes whole filters, non-structured removes single
weights to induce sparsity. This often requires special hard- or software to handle.

Global vs. Local pruning: Global pruning considers all filters, local e.g. only a single layer.

10.11.202531

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202532

Constellations in Efficient Networks

Interpretability

Uncertainty

Weakly supervised Learning

Vision and Language

Generative Models

Representation Learning

Semi-supervised Learning

Parameter-efficient

Fine-tuning

Continual Learning

Visual Transformers

Efficient Networks

Interactive Segmentation

Visual in-context learning

Deep Learning for Computer Vision II: Advanced Topics

PARAMETER-EFFICIENT
FINE-TUNING

10.11.202533

Deep Learning for Computer Vision II: Advanced Topics

Introduction to Parameter-Efficient Fine-Tuning (PEFT)

LLMs have a lot of weights → Fine-tuning is expensive

More compute – large and multiple GPUs

File size – Checkpoints (GPT-3 – 800 GB)

10.11.202534

Table taken from the DeepLearningAI 2023 workshop at https://www.youtube.com/watch?v=g68qlo9Izf0

GPU Tier $ / hr (AWS) VRAM (GiB)

H100 Enterprise 12.29 80

A100 Enterprise 5.12 80

V100 Enterprise 3.90 32

A10G Enterprise 2.03 24

T4 Enterprise 0.98 16

RTX 4080 Consumer N/A 16

Deep Learning for Computer Vision II: Advanced Topics

Introduction to Parameter-Efficient Fine-Tuning (PEFT)

Avoid tuning the whole model

Fine-tune only small subset of the model parameters

Allows fine-tuning large models on consumer GPUs

Difference between full fine-tuning and PEFT
Pros (PEFT): computational and storage efficiency, and less prone to catastrophic forgetting

10.11.202535

Images taken https://medium.com/@kanikaadik07/peft-parameter-efficient-fine-tuning-55e32c60c799

Full fine-tuning PEFT

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202536

Recap: Transformer Models [1], [2]

Deep Learning for Computer Vision II: Advanced Topics

PARTIAL FINE-TUNING

10.11.202537

Deep Learning for Computer Vision II: Advanced Topics

Partial Fine-tuning

Fine-tune part of the layers (usually the last ones)

Why could this be a potential problem for large domain shifts in inference?

November 10, 202538

Question [5 minutes]

Image source: https://ai.bu.edu/adaptation.html

Deep Learning for Computer Vision II: Advanced Topics

Partial Fine-tuning

Fine-tune part of the layers (usually the last ones)

Can be considered as PEFT

Does not mitigate large domain shifts

Adapters, Prompt Tuning, Prefix Tuning, and LoRA are better in practice

Adapt representation at different levels in the model

E.g. adapt low-level features in large appearance shifts

November 10, 202539

Partial Fine-tuning

Image Source: Sayeed, Mohammed Azam, et al. "Detecting Malaria from Segmented Cell Images of Thin Blood

Smear Dataset using Keras from Tensorflow." International Journal for Research in Applied Science and Engineering Technology 8.1 (2020): 597-607.

Deep Learning for Computer Vision II: Advanced Topics

ADAPTERS

10.11.202540

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202541

Adapters [2], [3]

Deep Learning for Computer Vision II: Advanced Topics

Methodology

Adapt the pre-trained model at multiple levels

Insert adapter modules between pre-trained layers

Small set of additional parameters

Fine-tune only the task-specific adapter modules

November 10, 202542

Adapters

Deep Learning for Computer Vision II: Advanced Topics

Adds “corrections” to the learned representations of the pre-trained model

Pre-trained model is unchanged

New tasks → New adapters!

Reduced storage and training cost compared to fine-tuning

Only need to store the pre-trained model and the small task-specific adapters

November 10, 202543

Adapters [2], [3]

Image taken from:

https://www.leewayhertz.com/param

eter-efficient-fine-tuning/

Pre-trained

Model

Task 1 Task 2 Task 3

Fine-tuned

Model 1

Fine-tuned

Model 2
Fine-tuned

Model 3

Pre-trained

Model

Task 1 Task 2 Task 3

Pre-trained

Model

Pre-trained

Model
Pre-trained

Model

Adapter 1 Adapter 2 Adapter 3

Fine-tuning Adapter PEFT

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202544

Adapters – Example for 2D → 3D Segmentation [4]

Given a model trained to segment cats and dogs (and other standard classes)

Image taken from: https://kiansoon.medium.com/semantic-segmentation-

is-the-task-of-partitioning-an-image-into-multiple-segments-based-on-the-

356a5582370e

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202545

Adapters – Example for 2D → 3D Segmentation [4]

Given a model trained to segment cats and dogs (and other standard classes)

Adapt it to segment volumetric brain tumors

Image taken from: https://kiansoon.medium.com/semantic-segmentation-

is-the-task-of-partitioning-an-image-into-multiple-segments-based-on-the-

356a5582370e Image taken from [6]

Deep Learning for Computer Vision II: Advanced Topics

Segment Anything Model (SAM) [7]

Pre-trained on a large-scale 2D dataset of natural images

Works well on out-of-domain data when fine-tuned

However:

Can it be applied to 3D medical data?

Usually applied slice by slice (axial)

Extremely poor results

No spatial coherence in predictions

→ Better: 3D convolutions!

November 10, 202546

Adapters – Example for 2D → 3D Segmentation [4]

3D MRI Image of the brain viewed from 3 different axes
Image taken from: https://submissions.mirasmart.com/ISMRM2022/itinerary/Files/PDFFiles/1860.html

Deep Learning for Computer Vision II: Advanced Topics

Adapters at multiple locations

November 10, 202547

Adapters – Example for 2D → 3D Segmentation [4]

Deep Learning for Computer Vision II: Advanced Topics

Adapters at multiple locations
Positional embeddings → Extend lookup table with depth

Patch embeddings → Use pre-trained 14x14 2D convolution as 1x14x14 3D convolution

Extend with 14x1x1 depth-wise convolution to approximate 14x14x14 3D convolution

November 10, 202548

Adapters – Example for 2D → 3D Segmentation [4]

Deep Learning for Computer Vision II: Advanced Topics

Adapters at multiple locations
Spatial Adapter

Additional depth-wise 3D convolution before up-projection

Adapters can learn 3D spatial information

November 10, 202549

Adapters – Example for 2D → 3D Segmentation [4]

Spatial adapter

Deep Learning for Computer Vision II: Advanced Topics

Adapters at multiple locations
Mask Decoder and Point Encoder are trained from scratch with 3D convolutions

They are already lightweight and have few parameters

November 10, 202550

Adapters – Example for 2D → 3D Segmentation [4]

Deep Learning for Computer Vision II: Advanced Topics

PREFIX TUNING

10.11.202551

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202552

Prefix Tuning [5]

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202553

Prefix Tuning [5]

Only update the concatenated prefixes

Intuition: Let the model learn how to “steer” itself
Prefixes encode task-specific knowledge

Why not learn which prompt works best (prompt engineering)?

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202554

Prefix Tuning [5]

Why not learn which prompt works best (prompt engineering)?

Optimization over discrete space is not flexible

Solution is forced to choose words from the vocabulary

Model is only adapted at the input layer

Equation taken from:

https://medium.com/@musi

calchemist/prefix-tuning-

lightweight-adaptation-of-

large-language-models-for-

customized-natural-

language-a8a93165c132

Optimal prompts (prompt engineering)

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202555

Prefix Tuning [5]

Why not learn which prompt works best (prompt engineering)?

Optimization over discrete space is not flexible

Solution is forced to choose words from the vocabulary

Model is only adapted at the input layer

Prefix tuning:

Optimization over continuous variables directly with gradient descent
Solution is flexible and task-specific

Model is adapted in all layers

Optimal prompts (prompt engineering)

Equations taken from:

https://medium.com/@musi

calchemist/prefix-tuning-

lightweight-adaptation-of-

large-language-models-for-

customized-natural-

language-a8a93165c132

Deep Learning for Computer Vision II: Advanced Topics

Adds additional context to the learned representations in the sequence

Pre-trained model is unchanged

New tasks → New prefixes!

Very similar to adapters but usually requires fewer parameters

November 10, 202556

Prefix Tuning [5]

Pre-trained

Model

Task 1 Task 2 Task 3

Fine-tuned

Model 1

Fine-tuned

Model 2
Fine-tuned

Model 3

Pre-trained

Model

Task 1 Task 2 Task 3

Pre-trained

Model

Pre-trained

Model
Pre-trained

Model

Prefixes 1 Prefixes 2 Prefixes 3

Fine-tuning Prefix Tuning PEFT

Deep Learning for Computer Vision II: Advanced Topics

PROMPT TUNING

10.11.202557

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202558

Prompt Tuning (soft prompts) [10]

Deep Learning for Computer Vision II: Advanced Topics

Adds additional context to the inputs in the sequence

Instead of the intermediate representations

Pre-trained model is unchanged

Similar to prefix tuning but only at input level

Soft prompts → Continuous values

November 10, 202559

Prompt Tuning (soft prompts) [10]

Pre-trained

Model

Task 1 Task 2 Task 3

Fine-tuned

Model 1

Fine-tuned

Model 2
Fine-tuned

Model 3

Pre-trained

Model

Task 1 Task 2 Task 3

Pre-trained

Model
Pre-trained

Model

Pre-trained

Model

Soft prompt 1

Fine-tuning

Prompt Tuning PEFT

Soft prompt 2 Soft prompt 3

Input 1 Input 2 Input 3

Deep Learning for Computer Vision II: Advanced Topics

LOW RANK ADAPTATION (LORA)

10.11.202560

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202561

Low Rank Adaptation (LoRA) [8]

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202562

Low Rank Adaptation (LoRA) [8]

Intuition behind LoRA

Pre-trained models already have good features

Gradient updates are sparse on new tasks

The model has only a little to learn to adapt to the new task

The “update matrices” have an inherently low rank

Reparameterization of update matrices

Downscale:

Upscale:

Low-rank

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202563

Low Rank Adaptation (LoRA) [8]

Reparameterization of update matrices

During inference → Just add the update matrices to the pre-trained model

No additional parameters → No latency

Adapters and Prefix tuning require additional parameters

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202564

Low Rank Adaptation (LoRA) [8]

Reparameterization of update matrices

During inference → Just add the update matrices to the pre-trained model

Update matrices for different tasks can be combined by addition (Example: DreamBooth[9])

Dog in a big red bucket

“Dog” LoRA update matrices

Superman, close-up portrait

“Toy” LoRA update matrices “Dog” + “Toy” LoRA update matrices

Dog, close-up portrait

Deep Learning for Computer Vision II: Advanced Topics

COMPARISON OF PEFT
APPROACHES

10.11.202565

Deep Learning for Computer Vision II: Advanced Topics

Full fine-tuning

Pros

Completely adapts model to the
new task – best performance
given enough data

Cons

Catastrophic forgetting as many
parameters are updated

Computationally infeasible for
large models

Storage inefficient

Slow training

November 10, 202566

Comparison of Fine-tuning Approaches

PEFT
Pros

Computationally efficient: only a
small portion of the parameters is
updated

Storage efficient

Fast training on consumer GPUs

Cons
Requires careful engineering for a
specific task

Where to put adapters

How to set r in LoRA

How large should the prefix be
in Prefix tuning, etc.

Deep Learning for Computer Vision II: Advanced Topics

Adapters and Prefix and Prompt
Tuning

Pros

Can “transform” the model to fit
another domain

Example: 2D → 3D inputs

Cons

Inference latency

Adapter and additional prefix
parameters make the model
larger

Often not parallelizable

November 10, 202567

Comparison of Fine-tuning Approaches

LoRA

Pros

No latency – just add the learned
weights to the pre-trained model
during inference

Usually better performant

Cons

Model architecture stays the
same → Cannot be applied on
domains from other dimensions

Deep Learning for Computer Vision II: Advanced Topics

PEFT allows to train huge models on consumer GPUs with little
performance loss

Different ways to achieve this:

Adapters, LoRA, Prefix and Prompt tuning, Partial Fine-tuning, Full Fine-
tuning

Choice depends on the task at hand

November 10, 202568

Conclusion: Parameter-Efficient Fine-Tuning

Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202569

Constellations in Efficient Networks

Interpretability

Uncertainty

Weakly supervised Learning

Vision and Language

Generative Models

Representation Learning

Semi-supervised Learning

Parameter-efficient

Fine-tuning

Continual Learning

Visual Transformers

Efficient Networks

Interactive Segmentation

Visual in-context learning

Deep Learning for Computer Vision II: Advanced Topics

References [Efficient Networks]

[1] West, Jeremy; Ventura, Dan; Warnick, Sean (2007). "Spring Research Presentation: A Theoretical Foundation for Inductive Transfer". Brigham Young University, College of Physical and
Mathematical Sciences.

[2] Peng, Xingchao, et al. "Visda: The visual domain adaptation challenge." arXiv preprint arXiv:1710.06924 (2017).

[3] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2009): 1345-1359.

[4] Ringwald, Tobias, and Rainer Stiefelhagen. "Adaptiope: A modern benchmark for unsupervised domain adaptation." Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. 2021.

[5] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size." arXiv preprint arXiv:1602.07360 (2016).

[6] A Comprehensive Introduction to Different Types of Convolutions in Deep Learning, from https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-
deep-learning-669281e58215

[7] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012):
1097-1105.

[8] Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of the IEEE conference on computer vision and pattern recognition.
2018.

[9] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

[10] Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[11] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The journal of machine learning research 17.1 (2016): 2096-2030.

[12] Chang, Woong-Gi, et al. "Domain-specific batch normalization for unsupervised domain adaptation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019.

[13] Micikevicius, Paulius, et al. "Mixed precision training." arXiv preprint arXiv:1710.03740 (2017).

[14] Zhu, Feng, et al. "Towards unified int8 training for convolutional neural network." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[15] Intel® oneAPI Deep Neural Network Library Developer Guide and Reference Developer Guide and Reference, https://software.intel.com/content/www/us/en/develop/documentation/onednn-
developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html

[16] Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." European conference on computer vision. Springer, Cham, 2016.

[17] Luo, Jian-Hao, Jianxin Wu, and Weiyao Lin. "Thinet: A filter level pruning method for deep neural network compression." Proceedings of the IEEE international conference on computer
vision. 2017.

[18] Ringwald, Tobias, et al. "UAV-Net: A fast aerial vehicle detector for mobile platforms." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
2019.

[19] Hoffman, Judy, et al. "Cycada: Cycle-consistent adversarial domain adaptation." International conference on machine learning. PMLR, 2018.

[20] Sun, Baochen, and Kate Saenko. "Deep coral: Correlation alignment for deep domain adaptation." European conference on computer vision. Springer, Cham, 2016.

[21] You, Kaichao, et al. "Universal domain adaptation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

10.11.202570

https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html
https://software.intel.com/content/www/us/en/develop/documentation/onednn-developer-guide-and-reference/top/programming-model/inference-and-training-aspects/int8-inference.html

Deep Learning for Computer Vision II: Advanced Topics

References [PEFT]

[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

[2] He, Junxian, et al. "Towards a unified view of parameter-efficient transfer learning." arXiv preprint arXiv:2110.04366 (2021).

[3] Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International Conference on Machine Learning. PMLR, 2019.

[4] Gong, Shizhan, et al. "3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for Promptable Medical Image Segmentation." arXiv

preprint arXiv:2306.13465 (2023).

[5] Li, Xiang Lisa, and Percy Liang. "Prefix-Tuning: Optimizing Continuous Prompts for Generation." Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers). 2021.

[6] Drakopoulos, Fotis, and Nikos P. Chrisochoides. "Accurate and fast deformable medical image registration for brain tumor resection

using image-guided neurosurgery." Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 4.2 (2016):

112-126.

[7] Kirillov, Alexander, et al. "Segment anything." arXiv preprint arXiv:2304.02643 (2023).

[8] Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

[9] Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

[10] Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint

arXiv:2104.08691 (2021).

10.11.202571

	Slide 1
	Slide 2: Content
	Slide 3: Efficient neural networks
	Slide 4: Efficient Neural Networks
	Slide 5: Efficient Neural Networks
	Slide 6: Efficient Neural Networks
	Slide 7: Efficient Neural Networks
	Slide 8: Efficient Neural Networks
	Slide 9: Efficient building blocks
	Slide 10: Efficient Building Blocks
	Slide 11: Efficient Building Blocks
	Slide 12: SqueezeNet v1
	Slide 13: Grouped Convolution
	Slide 14: Depthwise Separable Convolution
	Slide 15: Question [5 minutes]
	Slide 16: Depthwise Separable Convolution
	Slide 17: MobileNets
	Slide 18: ShuffleNet
	Slide 19: Efficient Building Blocks – Downsampling
	Slide 20: efficient training and inference
	Slide 21: Mixed Precision
	Slide 22: Mixed Precision
	Slide 23: Mixed Precision
	Slide 26: Mixed Precision
	Slide 29: Pruning
	Slide 30: Pruning
	Slide 31: Pruning
	Slide 32: Constellations in Efficient Networks
	Slide 33: Parameter-efficient Fine-tuning
	Slide 34: Introduction to Parameter-Efficient Fine-Tuning (PEFT)
	Slide 35: Introduction to Parameter-Efficient Fine-Tuning (PEFT)
	Slide 36: Recap: Transformer Models [1], [2]
	Slide 37: Partial fine-tuning
	Slide 38: Question [5 minutes]
	Slide 39: Partial Fine-tuning
	Slide 40: Adapters
	Slide 41: Adapters [2], [3]
	Slide 42: Adapters
	Slide 43: Adapters [2], [3]
	Slide 44: Adapters – Example for 2D  3D Segmentation [4]
	Slide 45: Adapters – Example for 2D  3D Segmentation [4]
	Slide 46: Adapters – Example for 2D  3D Segmentation [4]
	Slide 47: Adapters – Example for 2D  3D Segmentation [4]
	Slide 48: Adapters – Example for 2D  3D Segmentation [4]
	Slide 49: Adapters – Example for 2D  3D Segmentation [4]
	Slide 50: Adapters – Example for 2D  3D Segmentation [4]
	Slide 51: Prefix tuning
	Slide 52: Prefix Tuning [5]
	Slide 53: Prefix Tuning [5]
	Slide 54: Prefix Tuning [5]
	Slide 55: Prefix Tuning [5]
	Slide 56: Prefix Tuning [5]
	Slide 57: prompt tuning
	Slide 58: Prompt Tuning (soft prompts) [10]
	Slide 59: Prompt Tuning (soft prompts) [10]
	Slide 60: Low rank adaptation (LORA)
	Slide 61: Low Rank Adaptation (LoRA) [8]
	Slide 62: Low Rank Adaptation (LoRA) [8]
	Slide 63: Low Rank Adaptation (LoRA) [8]
	Slide 64: Low Rank Adaptation (LoRA) [8]
	Slide 65: Comparison of PEFT approaches
	Slide 66: Comparison of Fine-tuning Approaches
	Slide 67: Comparison of Fine-tuning Approaches
	Slide 68: Conclusion: Parameter-Efficient Fine-Tuning
	Slide 69: Constellations in Efficient Networks
	Slide 70: References [Efficient Networks]
	Slide 71: References [PEFT]

