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Motivation ﬂ(“.

Karlsruhe Institute of Technology

?

5000 train + test images to
annotate in total

How much time?

Cityscapes image: 1.5h annotation time [5]
(1024 x 2048 pixels)
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Motivation ﬂ(“.

Karlsruhe Institute of Technology

?

o
5000 train + test images to 312.5 days 24/7
annotate in total Or 4 work years!!!

Cityscapes image: 1.5h annotation time [5]
(1024 x 2048 pixels)
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Motivation ﬂ(“.

Karlsruhe Institute of Technology

Do we really need to click all 1024x2048 pixels?

?

o
5000 train + test images to 312.5 days 24/7
annotate in total Or 4 work years!!!

Cityscapes image: 1.5h annotation time [5]
(1024 x 2048 pixels)
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Motivation ﬂ(“.

Karlsruhe Institute of Technology

Do we really need to click all 1024x2048 pixels?
- No! Solution: Interactive Segmentation
- Only 2-3 clicks per object are needed!

?

o
5000 train + test images to 312.5 days 24/7
annotate in total Or 4 work years!!!

Cityscapes image: 1.5h annotation time [5]
(1024 x 2048 pixels)

Annotation time is reduced significantly!

'o‘\
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Outline ‘(IT

Karlsruhe Institute of Technolo

® Definition of Interactive Segmentation

® Components in Deep Interactive Segmentation
® Type of Interaction
® Guidance Signal
® Robot User
® Active Learning

® Evaluation Metrics

® Applications

® Natural Images
® Medical Image Analysis

® Segment Anything Model (SAM)

o\
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Definition of Interactive Segmentation [1] - ‘(IT

@ Definition:

® /nteractive segmentation describes an iterative feedback loop, where user-provided corrections to the
model’s output inform subsequent predictions, leading to updated predictions. User guidance is
provided in the form of, e.q., clicks, scribbles, or other interactions.

o\
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Definition of Interactive Segmentation [1] ﬂ(".

@ Definition:

® /nteractive segmentation describes an iterative feedback loop, where user-provided corrections to the
model’s output inform subsequent predictions, leading to updated predictions. User guidance is
provided in the form of, e.q., clicks, scribbles, or other interactions.

Segmentation

Examples:
CNN, ViT, K-means clustering

Non-interactive Segmentation

'o‘\
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Definition of Interactive Segmentation [1] ﬂ(".

@ Definition:

® /nteractive segmentation describes an iterative feedback loop, where user-provided corrections to the
model’s output inform subsequent predictions, leading to updated predictions. User guidance is
provided in the form of, e.q., clicks, scribbles, or other interactions.

Click Initialization lteration 1 lteration 2 lteration 3 Iteration 4

Interactive Segmentation

e “Cat” Click ® “Background” Click

..‘\
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Domains of Interactive Segmentation ﬂ(".

ition of Whole-body PET/CT |

Inputimage QUERHT of model tion of Whole-body PET/CT Images
Tumour Segmentation in PET/CT [7]
(Previous Master Thesis at CV:HCI, 2023)
User corrections Improved segmentation

Image & Video Editing

Object Instance Retrieval [9] Full-body Anatomy Segmentation [8]
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History S(IT

Karlsruhe Institute of Technolo

® Classical approaches
@ Active Contours
2 Graph Cut
® Deep Learning-based approaches

o\
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Classical Approaches A\‘(IT

@ Active Contours [3] :
® Magnetic Lasso (Adobe Photoshop)
® User-drawn scribble (red curve) is moved along the gradient vector field
® Scribble “snaps” to the object boundary

® Contour (also called a snake) minimizes the energy functional

® E,; 2 Internal energy: enforces the contour to be smooth and without sharp edges
" Eag 2 Image Gradient: attracts the contour towards local minimums in the gradient field (edges)
®  E., = Users can drag the edges of the contour - Additional constraint to force the curve to obey the user interactions

r1

L S

%
Esnake

E snake(v(s)) dS

0
1

= | B + Erna3(5)

+ Econ(V(s)) ds
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Classical Approaches

@ Graph Cut [4]

® Represent image + scribbles as graph
® Each pixel in the image is a vertex

® Additional S vertex for the object and T for the background
® Edges are defined for all pairs of pixels

® All marked “Llama” pixels have an infinite weight to S

® Same for all “Background” pixels to T

® Other edges:

® Small weight if colour difference or distance to other pixel is large

T \

_ (Zp ~ Iq)2 1
Bipqy o ezp ( 202 dist(p,q)

® Segmentation boils down to computing the minimum cut
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Background
(blue)
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Deep Learning-based Approaches A\‘(IT

Classical approaches:

® Rely solely on appearance features
® Do notincorporate any semantic meaning
® Struggle with weak boundaries
®  Or multiple similar objects next to each other (herd of llamas)

® Difficult to encode prior knowledge such as shapes and textures of segmentation targets

® No redundancies in the representations
® Small variations in appearance lead to large prediction variations

Solution:
® Deep Learning-based approaches

o\
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Deep Learning-based Interactive Segmentation

AT

Karlsruhe Institute of Technology

All components are here... Let's build an interactive model together!

Types of Interactions

Guidance Signal

-

-

»“
> . ‘,‘
ot

Clicks Bounding box

Scribbles Boundary Polygon

November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics

Robot User

{ | E-o
é Il
i [O-38~F]
‘g B\y 5 Accumulate
e 1] a =+ —> interactions in G

Intermediate Prediction

uuuuuuuu to Model
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Karlsruhe Institute of Technology

TYPES OF INTERACTIONS

o\
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Types of Interactions ﬂ(".

® The way the user communicates with the model

® Click
®  Apoint* ¢; = (x;, ¥;)
® Scribble

® Setof npoints S = {c,, C,,...,C,}
® Bounding box
® Points representing a rectangular region
® Can be parametrized by two points (top left, bottom right), initialized by user
® Boundary polygon
®  Sequence of m vertices P = {v,, v,,..., v,} lying on the boundary of the object
® User interactions are to put and drag them to correct positions

® Other interactions (rarely used) Types of Interactions
® Examples: Eye gaze, text prompts

~

Bounding box Scribbles Boundary Polygon

*2D or 3D depending on image dimension

'o‘\
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C I I c ks . . Karlsruhe Institute of Technology
Click annotation example

SimpleClick Demo

® Click
® Apoint* ¢, = (x;, ;)

® Pros —
. Predictions threshold
0,50
®  Quick L
Alpha blending coeffiolent
. 0,80
@ Precise i
Visualisation click radius
3

il

® Can be placed in tight spots to correct small errors
® Easy to simulate during training

® Center of largest object / error

® Extreme points

® Random click

® Cons

®  Ambiguous
® Not always clear what the user intends
®  Precise, but low amount of information
®  May require many clicks for complex objects

Gv:hu@KlT
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Scribbles ﬂ(“.

Karlsruhe Institute of Technology

Scribble annotation example

® Scribble

® Setof npoints S = {c4, C,,...,C}

® Pros
® Flexible and precise
® Can approximate any shape
® Low ambiguity due to its expressiveness

® Cons
® Simulations are possible but introduce a “user shift”
® User shift: Discrepancy between simulated interactions during training and real interactions during evaluation
®  Occurs due to the larger flexibility and “infinite” ways to simulate it
® Takes slightly more time to draw

'o‘\
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Karlsruhe Institute of Technology

Bounding Boxes ﬂ(".

Bounding box annotation example

® Bounding Box
® Points representing a rectangular region

® Pros
®  Quick
® Requires 2 — 4 clicks
® Localizes the context
® Model can ignore everything outside the box

RedBrick Al

® Easy to simulate

® Can be represented in many ways
®  Top-left, bottom-right points Extreme Points
® Extreme points: the farthest left, right, top, and bottom points. )

® Cons

® Low precision
® Bounding box contains background information as well

o\
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Boundary Polygons ﬂ(".

Boundary polygon annotation example

® Boundary Polygon
® Sequence of m vertices P = {v,, v,,..., V,,} lying on the boundary of the object

® Pros
® Gives control to the user to exactly fit the boundary and correct the initial prediction

® Cons
® Takes more time to drag all vertices to the correct position

u Difficult to simulate
® Many possible ways to correct a vertex

'o‘\
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Other Types of Interactions - Text

sky

® Text prompts:
® |[ntuitive
® Can eliminate ambiguity of clicks when combined

AT

Karlsruhe Institute of Technology

clouds O Hint:

tree

prediction

““The sky is not

p visible in this

image”

improved prediction

Skip

ground truth

Loss

1]

Context | I

F ‘Attribute[ F | Decoder+

Encoder

Click

oo W 1oe

| Attention|

Hﬁ
Global
Pooling Tanh

S

Little boy and Frce: DO O o h C i
| brve charr 7~——> word embedding —> Bi-LSTM —]7—->€9—> Adapt
Phrase tribute Learning
® Positive Click ® Negative Click € Concatenation
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red
blue
1 ;:hair
—> Classifier ———>{
b&;y
e
|Adapt] Conv+BN Attribute Loss
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Other Types of Interactions — Eye Gaze ﬂ(".

® Gaze := Eye Tracking
® Follow gaze direction and segment that area
® Intuitive
® Very Quick
® Removes the need of touch

® E.g. touching a screen in a surgery room
®  Or splitting attention while driving

'o‘\
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AT

Karlsruhe Institute of Technology

GUIDANCE SIGNAL

o\
24 November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics < cv:hci @KIT

Computer Vision for
Human-Computer Interaction



Guidance Signal ﬂ(".

Karlsruhe Institute of Technology

@ Now that we know which interactions we have
® How do we integrate that into the segmentation model?

Clicks Bounding box Scribbles  Boundary Polygon

How are these clicks “presented” to the model?

.o‘\
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Guidance Signal Definition [1] ‘(IT

Karlsruhe Institute of Technolo

® Interactions as Guidance Signals

B A guidance signal is a representation of the user interactions in a form in which the model can
process it. This can be an explicit representation that involves transforming the user interaction into
an additional structured input for the model to process and learn from [...] or implicit, where user

interaction information is subtly integrated into the model’s learning process without the provision of
explicit structured input.”

o\
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Guidance Signals Examples (Explicit) ﬂ(".

® Explicit Guidance Signals
® Additional structured inputs to the model
® Deterministically computed from the interactions or interactions + image

Guidance Signal

.o‘\
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Guidance Signals Examples (Explicit) [1] ﬂ(".

@ Click-based explicit Guidance Signals

® Gaussian Heatmaps and Disks

® Locally encode the clicks

® New clicks do not change the previous signal but are just pasted on top
® Euclidean or Geodesic Map

® Encode the minimum Euclidean or Geodesic distance to the set of clicks

® Larger distance if there are large intensity changes

® New clicks require to recompute the whole guidance signal CT Image Heatmaps Disks Euclidean Map
® Similar to the Graph Cut [4] idea
® Location Prior [20]

®  Geodesic Distance := Euclidean + “Appearance” distance . . .
® Start from 255

® Reduce by 10 if you Cross and edge Geodesic Map Exponential Geodesic Location Prior Attraction Field

® Attraction Field [19]
ad -

® Model attraction field of punctual electric charges
.o‘\ .
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Guidance Signals Examples (Explicit) ﬂ(".

® Scribble-based explicit Guidance Signals
® Same as with clicks but applied over set of points (scribbles)

® Scribbles are usually simulated by skeletonizing the ground-truth mask
® Replicate brush strokes

CT Image with Scribbles Heatmaps Euclidean Map Geodesic Map

Input Mask Skeleton Random Mask Broken Skeleton ~ Warped Scribbles Corrected Scribbles

l‘“
;" 8¢

GT + Prediction + Error Subset of GT GT Skeletonization Error Skeletonization
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Guidance Signals Examples (Implicit) A\‘(IT

® Implicit Guidance Signals

® Encoded without a tangible entity
®  Analogy: Explicit signals are “things”, Implicit signals are “actions”
® Examples:
® In the loss function
® Higher loss in missegmentations near interactions - Force the model to “listen” to the interactions
® In the input pre-processing
® Use bounding box to crop the image and feed only crop to the model

o\
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AT

Karlsruhe Institute of Technology

3 Takeaway: Guidance Signals are “things” or

“actions” that transform the user interactions
In a way that the model can process them

.o‘\
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AT

Karlsruhe Institute of Technology

ROBOT USER

o\
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Robot User - Motivation ﬂ(".

@ How was the model trained before annotating the 5000 images?
® Deep neural networks are data hungry so it requires a much larger training set

Segmentation
- ‘

5000 train + test
annotations

Application Phase

'o‘\
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Robot User - Motivation ﬂ(".

@ How was the model trained before annotating the 5000 images?
® Deep neural networks are data hungry so it requires a much larger training set

Segmentation Segmentation
Training Dataset

. anaset. 5000 train + test
100.000 images with pixelwise labels annotations

-

1 click per car

Training Phase Application Phase

® Minimum 100.000 clicks = Still a lot and quite expensive
® Solution: Simulate the clicks (Robot User)!

.o‘\
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Robot User A\‘(IT

Karlsruhe Institute of Technology

@ Definition [1]: “A simulated model that mimics the behaviour of a real human annotator. The robot user
leverages ground-truth labels to simulate user interactions at plausible locations.”

Input image

Ground-truth label

P

A 4 E\‘v

I Pl [L]—[G] rommezte
loss

v |GH]I —»%_» P |le—|L

model update

Guidance Signal

repeat until max. #clicks
o

Prediction

=l Q]|
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Robot User |

- G+I—)%—>P

G Accumulate
interactions in G

\Y G+I_.%_,p:i
C——

model update

Robot user generates an initial click

repeat until max. #clicks

7‘9
=2
+
=
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Input image

Ground-truth label

Guidance Signal

= (Q] |~

Prediction

( cv:hci @KIT
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Robot User i ﬂ(".

Karlsruhe Institute of Technology

" I |4+ |L|—|G
g I‘IL I | Inputimage
ol G O35
Interactive model predicts based on image + guidance signal ;f L| Ground-truth label
E ' @\r Acoumulate G Guidance Signal
:)':‘ ]l P + L > G interactions in G
B P | Prediction

v |GH|I —’%—)P (k-)iL
—

model update
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Robot User Il AT

Karlsruhe Institute of Technology

1 (=R
I + o B [
2 I‘IL I | Inputimage
Lt G O3
Robot user generates a refinement click in the missegmented area E L| Ground-truth label
rgu Y @\r Acoumulate G Guidance Signal
% ]l g + L > G interactions in G
B P | Prediction

v |GH|I —’%—)P (k-)iL
e

model update
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Robot User I AT

Karlsruhe Institute of Technology

" I |4+ |L|—|G
g I‘IL I | Inputimage
ol G O35
Interactive model predicts based on image + guidance signal ;f L| Ground-truth label
E ' @\r Acoumulate G Guidance Signal
:)':‘ ]l P + L > G interactions in G
B P | Prediction

v |GH|I —’%—)P (k-)iL
—

model update
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Robot User Il AT

Karlsruhe Institute of Technology

1 (=R
I + o B [
2 I‘IL I | Inputimage
Lt G O3
Robot user generates a refinement click in the missegmented area E L| Ground-truth label
rgu Y @\r Acoumulate G Guidance Signal
% ]l g + L > G interactions in G
B P | Prediction

v |GH|I —’%—)P (k-)iL
e

model update
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Robot User I AT

Karlsruhe Institute of Technology

" I |4+ |L|—|G
g I‘IL I | Inputimage
ol G O35
Interactive model predicts based on image + guidance signal ;f L| Ground-truth label
E ' @\r Acoumulate G Guidance Signal
:)':‘ ]l P + L > G interactions in G
B P | Prediction

v |GH|I —’%—)P (k-)iL
—

model update

o\
41 November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics < cv:hci @KIT

Human-Computer Interaction



Robot User IV

% ‘ Segmentation
Loss

Backprop

Compute loss after gathering all clicks and update model

Interactive models are usually updated after ALL prediction steps are performed
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repeat until max. #clicks

GH @%—» P
BN
P |4 [L]—|G| norctonein e
loss
GH —»@—» P |e—
-

model update
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Karlsruhe Institute of Technology

Input image

Ground-truth label

Guidance Signal

= (Q] |~

Prediction

( cv:hci @KIT
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Discuss with your neighbour (3 min) - ‘(IT

® Question: How could the robot user decide where exactly to put new
interactions, for example clicks (steps | and Ill)?

¢ - BN T C

I G+I—>%—>P

Accumulate
interactions in G

Robot user generates an initial click

repeat until max. #clicks
v
-+
=
p

1l | —
T 9= |!/ G+I_>@_,P£S_S,L

0 2 c 0 model update
Robot user generates a refinement click in the missegmented area

oo\
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Robot User S(IT

Karlsruhe Institute of Technolo

® How does the robot user decide where to put new interactions (steps | and IlI)?
® For clicks = Most often: center of ground-truth or center of error

|
I |+ |L|—=|G

Step | 4 - o |

% T lGH I ﬁ%—»P

Ground-truth New Click §

é A 4 E\‘

2o P4+ [L]— |G| remstoncine
Step Il ) 1

P ‘ q v |GH|I %_, P (I__) L
model update
Prediction Error New Click
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Robot User - Clicks ﬂ(".

Karlsruhe Institute of Technology

® Many different strategies for generating clicks from ground-truth (GT) and errors
® Center of GT/error

® Random click in GT/error
® Uniform sampling

® Distance transform-based sampling
® Distance transform used as prior sampling distribution ‘
® Click is near the center but not “exactly” in the center
® Serves as regularization

® Stratified sampling Error Euclidean New sampled dlick

Distance Transform

® Sample only clicks near the boundary
® Sample clicks along longest axis
® The generated clicks can be perturbed
@ Random X,Y shift to simulate user error

® No user knows where exactly the center is
® Acts as a regularization

Stratified Long Axis Sampling [23]  Stratified Boundary Sampling [24] Ground-truth Mask

o\
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Robot User - Scribbles Q(IT

® Most often simulated through skeletonization of GT mask
® Skeleton := set of pixels within the mask which are maximally distant from the mask boundary
® Other option: Image  InputMask  Contours
® Boundary contours - 1-pixel wide boundary of the GT mask

Input Mask Skeleton

GT + Prediction + Error Subset of GT GT Skeletonization Error Skeletonization

o\
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Robot User — Bounding Box ﬂ(".

® Typically, non-iterative
® Only one prediction step

® Simulated bounding box is either
8 Perfect := GT Box

8 Perturbed := Randomly shifted in X, Y directions to simulate user error
® Regularizes the model

® Relaxed := Extended by some margin to include more context

Perfect

'o‘\
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Robot User — Boundary Polygon ﬂ(".

® Worst vertex correction [25]

B The vertex with the largest error is “dragged” to the correct position
@ Often with its k-neighbours

'o‘\
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When to use a Robot User? \‘(IT

® During training
® Simulate interactions for a large amount of images
® Typically infeasible to do with real annotators - simulate it
® During evaluation

® Simulate an annotator using the interactive model
® Instead of conducting time-intensive and expensive annotation studies

o\
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When to use a Robot User? (3 min) A\‘(IT

® During training
® Simulate interactions for a large amount of images
® Typically infeasible to do with real annotators - simulate it
® During evaluation

® Simulate an annotator using the interactive model
® Instead of conducting time-intensive and expensive annotation studies
® What is a potential problem when doing this?

° .\
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Evaluation with Robot User Q(IT

Two routes to evaluating an interactive model

(4 N

Simulate the interactions on a test dataset

Usually the test split of a public dataset

Since it is simulated, sample size can be quite large

Most current approaches go down this route and use a Robot User during evaluation

!

Are these simulations realistic?
Would the results be the same as a real user study?

Conduct a user study with real human experts
Usually on a small sample size and few annotators
The evaluated performance is the REAL performance when used by experts

Weos

w.

o\
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Evaluation with Robot User ﬂ(".

Karlsruhe Institute of Technology

® Comparison of 4 popular robot users and a real user study THIS is what you would report
® 8 medical annotators from various backgrounds if you lIJS? Off-ther;S:Ielf
® External collaboration with University Clinic Essen, Al for Medicine (IKIM) simulation methods

® Dataset: AutoPET, n=20 volumes

“Our method is SOTA and
is awesome and great!
Just look at the numbers!”

User Study 1 User Study 2

0.80 1
0.75 1
2 0.70 2 0.70
S . Y S
A v v - v w
8 065 ks
o —4#— (R1) Center Click B 0.651 —&#— (R1) Center Click
0.60 - —¥— (R2) Uncertainty —¥— (R2) Uncertainty
' —¥— (R3) EDT —%¥— (R3) EDT
—— (R4) Uniform 0.60 A —m— (R4) Uniform
0.55 —di— Qurs —&— Qurs
—4— Mean Annotator —4— Mean Annotator
...................................................... +=eeo 0 .clicks . 0.55 4l et aemererderitis st s s om0 2220 D ClTCKS
0.50 T T T T T T T T T T
0 2 4 6 8 4] 2 4 6 8
Click Index Click Index

Marinov, Zdravko, et al. "Rethinking Annotator Simulation: Realistic Evaluation of Whole-Body PET Lesion Interactive Segmentation Methods." MICCAI 2024.
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Evaluation with Robot User

® Comparison of 4 popular robot users and a real user study

® 8 medical annotators from various backgrounds

® External collaboration with University Clinic Essen, Al for Medicine (IKIM)
@ Dataset: AutoPET, n=20 volumes

0.80

0.75 1

Dice Score

User Study 1

<

~

(=]
L

e

o

n
)

+ —
—4#— (R1) Center Click
—¥— (R2) Uncertainty
—¥— (R3) EDT

—=— (R4) Uniform
—&— Qurs

—4— Mean Annotator
...................................................... «=exx 0.clicks

0 2 4 6 8
Click Index

0.80 4

0.60 1

0.55 -

User Study 2

—&#— (R1) Center Click
—¥— (R2) Uncertainty
—%¥— (R3) EDT

—— (R4) Uniform
—&— Qurs

—4— Mean Annotator
............................................................ 0 clicks

0 2 4 6 8
Click Index
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THIS (black lines) is what
is actually the performance
in a real user study
(same model, same data)

Marinov, Zdravko, et al. "Rethinking Annotator Simulation: Realistic Evaluation of Whole-Body PET Lesion Interactive Segmentation Methods." MICCAI 2024.
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ACTIVE LEARNING
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Active Learning for Interactive Segmentation [26]

® Two types of active learning
® Focused on data annotation
® Focused on model refinement

Unlabelled Intermediate Model Trained Model Automatic Predict
Data
1 1
- ’ ® - U4
> Predict——>»"™ =———FPresen t—> ® ' o —Refine—>»™ -
’ -~ 4 “
Unse:
Dat i Intermediate Predictio Al Predicti
Trained Model erme Refiners ccurate Prediction

Feedback to Model |
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Active Learning for Data Annotation [26] A\‘(IT

® Annotators label a few samples (annotation budget) with interactive segmentation
® Model is trained on annotation budget
® Predicts on the rest of unlabelled data
® “Most informative samples” are selected for further annotation and added to annotation budget
@ All steps are repeated until the model reaches a certain performance on an independent test dataset

® |n the end:

® Most important samples are labelled and can be used for model training
® A model is already trained well and can be deployed

Active Learning Sample Selectiomn

\ @ [
. :' Annotate for
Present—» Q s. 9 Training

Performance
Threshold

UnISbteIIed Annotators Intermediate Model Trained Model Automatic Predictions
ata
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Most Informative Sample Q(IT

Karlsruhe Institute of Technology

® What is an “informative” sample?

® Informative := Adding annotations to it would benefit the model training
® |dea := Select only top N informative samples instead of all unannotated samples
® Metrics for informativeness:

® Most often associated with prediction uncertainty [27]
® Ensembles
® MC-Dropout
® Test-time augmentation

]

Auxiliary network
ctive Learning Sample Selectio
" ]
° L
N . \ X4
> ° _____Annotate for ____Performance ict—>™ -
Present Q Training Threshold IERSENG , .

Intermediate Model Trained Model Automatic Predictions

Unlabelled
Data Annotators

o\
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Most Informative Sample [28]

® Most often associated with prediction uncertainty [27]
® Ensembles
® MC-Dropout
® Test-time augmentation
® Auxiliary network

MC-Dropout Test-time augmentation Auxiliary network

@ﬂ\
ol w B
-Jol

Ensembles

@ﬂ\
&0 =B
Tl

. o Variance of model predictions Variance of model predictions . . .
Variance of model predictions Predictions from same model Predictions from same model Train a special auxiliary network
Ensemble of 3 different models with different “deactivated” weights with same augmented input to predict the uncertainty

o\
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Active Learning for Model Refinement [26]

® Goal: Improve model, not annotate more data
® Same sampling selection strategies as for Data Annotation
® Most informative samples or hard-sample mining (worst model performance)

® Final goal is to deploy a robust model

i
‘> ’

Unseen
Data

Trained Model

T

)_ -
' 4 “

Predict

Intermediate Prediction

Refiners

Feedback to Model

59 November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics

AT

Karlsruhe Institute of Technology

‘> ¢’

>- -
s’ ‘>

Refine

Accurate Prediction

(cv:hcn@m



AT

Karlsruhe Institute of Technology

CONSTRUCTING THE
INTERACTIVE PIPELINE
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Deep Learning-based Interactive Segmentation
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All components are here... Let's build an interactive model together!

Types of Interactions

Guidance Signal

-

-

»“
> . ‘,‘
ot

Clicks Bounding box

Scribbles Boundary Polygon

November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics

Robot User

{ | E-o
é Il
i [O-38~F]
‘g B\y 5 Accumulate
e 1] a =+ —> interactions in G

Intermediate Prediction

uuuuuuuu to Model
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Working Example

All components are here... Let's build an interactive model together!

Active Learning

Type of Interaction Guidance Signal Robot User
I
.\ “ ! . 1 m"‘ _FE Active Learning Sample Selectionr
' (s ] . 1

‘ il [G % \o. ~ o~
v 8 [l mﬁ = %— eeeee — Cy‘f, Aﬁﬁﬁ Q -
: i +—» B

Un\;;eal\ed Annotators Intermediate Model Trained Model Automatic Predictions

Clicks Gaussian Heatmaps ,lv Bh M-l
“““““““““ Focused on Data Annotation

Center of Object (1) / Error (Ill) Sample Selection: MC Dropout

Gv:hu@KlT
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Working Example ﬂ(".

Training Phase

100 labelled cats
90 train / 10 test

'o‘\
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Working Example ﬂ(".

Training Phase

= m-E
[ ! [GH [—-gc8—~F]
E\»; D Accumulate
] g + —> interactions in G
Hauik Sy

100 labelled cats € odel opdate
90 train / 10 test

repeat until max. #clicks

Simulate central clicks for steps | and Ill
For each cat image: Simulate 10 iterative clicks
LossonTrain & Test Update model after the 10t click

—e— Train Loss
+— Test Loss

10 x 100 = 1000 forward passes per epoch!
Interactive training is inherently slow!
(linearly slower than non-interactive)

Ennfh )

'o‘\
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Working Example ﬂ(".

Application Phase

Training Phase

E.
&+ [
[ 7 [(—3ct—[F]
E\»; D Accumulate
1 g + —) interactions in G
interactive annotation with
loss clicks
v El—’%ﬁlﬂﬁ 10.000 unlabelled cats (Annotator can make

as many clicks as wanted,

repeat until max. #clicks

Provide top 50 for

100 labelled cats
90 train / 10 test

model update

Simulate central clicks for steps | and Ill
For each cat image: Simulate 10 iterative clicks

not exactly 10)
; % u \ Fine-tune model with new
Loss on Train & Test Update model after the 10t click 50 annotations
| BE&0 B
] 10 x 100 = 1000 forward passes per epoch! % n /
= Interactive training is inherently slow! &

(linearly slower than non-interactive) Compute Uncertainty for all 10.000 images

'o‘\
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Working Example ﬂ(".

® After annotating 500 / 10.000 cats, the model starts to produce almost
perfect segmentations for all cats!

® We have both a good model for cats
® and 10.000 annotated cats for more training

'o‘\
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Evaluation Metrics

® Segmentation Performance
2 NoC@90

® Number of Clicks (NoC) at 90% performance (typically loU or Dice)

2 loU@10 or Dice @10

® |oU or Dice at 10 clicks
® NoC /loU curves
® NoC / Dice curves

® Consistent Improvement (Cl)
® % of iterations where adding an interaction improves the segmentation

November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics
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Evaluation Metrics

® Usabillity
2 User Time
® Time it takes to annotate an image in seconds

® Machine Time
® Inference time for an image

u Scribble Length

® Mean number of pixels in scribbles

® NASA-TLX Score

® Perceived workload in terms of mental demand, frustration etc.

a System Usability Scale (SUS)

® Likert-scale questionnaire to quantify usability

November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics
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APPLICATION IN MEDICAL
IMAGE ANALYSIS
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Application in Medical Image Analysis ﬂ(".

® Similar to natural images
a With a few differences

-

N
Segmentation Segmentation U

Training Dataset
100.000 images with pixelwise labels

Training Phase

Application Phase

'o‘\
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Application in Medical Image Analysis ﬂ(".

Differences

Annotators are
medical experts

Segmentation
Model

Segmentation
Model =

Training Dataset
100.000 images with pixelwise labels

Training Phase

Application Phase

'o‘\
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Application in Medical Image Analysis ﬂ(".

CT: Computed tomography
MRI: Magnetic Resonance Imaging

Differences

Medical imaging modalities are diverse

.

3D Images

3D images are seen
as a sequence of
2D “slices”

Annotators are Datasets have fewer

. training samples
medical exPerts but consist of 3D images in

radiology (CT, MRI)

Grayscale RGB

EN '

N

Y -
Dermoscopy Endoscopy .
Ultrasound = Segmentation = U

Segmentation
= Mode! =

Model

Gigapixel Images

Training Dataset g
400-606 ~100-600 images with pixelwise / Mi c;rbs cbpy
voxelwise labels

Training Phase Application Phase

'o‘\
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Medical Data Example: 3D CT Images ﬂ(".

Application Phase

é@

Training Phase

" BN [

sy

; Provide ton50-f
/| CH [~ e

% E\, - Acoumulate ‘ 50-annotations

g m +—> interactions in G

—

40-000 300 unlabelled livers

Provide slice with highest
uncertainty

loss
\ El—»%—»@@
100 labelled livers in CT € odel opdate
90 train / 10 test

Update prediction but keep
model frozen
(updates usually corrupt the model)

Loss on Train & Test

—e— Train Loss
+— Test Loss

Epoch

Repeat until clinician is
satisfied and then move on
to next CT volume

@e N

Compute Uncertainty for al-10-000-images all slices of the current CT image
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Medical Data Example: 3D CT Images ﬂ(".

Application Phase

é@

Training Phase

" BN [

sy

; Provide ton50-f
/| CH [~ e

% E\, - Acoumulate ‘ 50-annotations

g m +—> interactions in G

—

40-000 300 unlabelled livers

Provide slice with highest
uncertainty

loss
\ El—»%—»@@
100 labelled livers in CT € odel opdate
90 train / 10 test

Update prediction but keep
model frozen
(updates usually corrupt the model)

Loss on Train & Test

—e— Train Loss
+— Test Loss

Epoch

Repeat until clinician is
satisfied and then move on
to next CT volume

@e N

Compute Uncertainty for al-10-000-images all slices of the current CT image
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SEGMENT ANYTHING
MODEL (SAM)
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Segment Anything Model (SAM) - ‘(IT

® Interactive Segmentation at a scale
B Pre-trained on 1 billion masks from 11 million images
® First model towards a foundation segmentation model
® Great zero-shot performance
® Notion of “thing”
® Interaction Types
a Click, Bounding Box, Text

o\
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SAM Architecture —

® Image encoder
® Mask encoder
® Prompt encoder
® Mask decoder

Components

. 4?— mask decoder
image
encoder [ =L . T t T :

/conv'\ ‘ prompt encoder

embedding mask  points  box text

SAM Architecture [9]
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SAM Architecture — Image Encoder ﬂ(".

® Image encoder

B Pre-trained Masked Autoencoder ViT-H [29] o
B 256-dimensional representation of the image Eiiié*i“ - *Egié
® Large and heavy but powerful S ,\ - @ menEm

® Needs to be ran only once per image!

Masked Autoencoder Training [29]

' Aﬂ}— mask decoder
image
encoder [ - T 1 T

conv: prompt encoder

image t T f T

embedding Mask  points  box text

S

valid msks

SAM Architecture [9]
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SAM Architecture — Prompt Encoder

(1) Contrastive pre-training

AT

Karlsruhe Institute of Technology

(2) Create dataset classifier from label text

® Prompt encoder ErEn

Encoder l l i l
B Text A B
I 1T I,T: 1T I, Ty
! O e "N (3) Use for zero-shot prediction
® CLIP text encoder [30] | [ [amam | - [ JBEEE
mags I I O O O B O I [
Encoder C ¥ 2 1_ _‘ N EI::;%‘; s LTy T Ty L Ty

Iy | |InT) | InTs

W) - [
a .

——

:"'conv\\ ‘ prompt encoder
image T t T T
embedding Mask  points  box text
SAM Architecture [9]
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Reminder: CLIP [30]
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SAM Architecture — Prompt Encoder ﬂ(".

® Prompt encoder
® Points (x, y) + Label (foreground / background)

® (X, y) =2 Positional Encoding (256-dim) - Summed with “foreground” or “background” learnable
weights

® Bounding Box
- (X’ y)top left (X, y)bottom right
® Positional embeddings - Summed with “top-left” and “bottom-right” learnable weights
® SAM learns internally how to understand these prompts!
® Positional encoding = Spatial location

EE I 1 L 1] 7 1]

® “foreground”, “background”, “top-left”’, “bottom-right” weights - Prompt meaning

. 4?— mask decoder —
image
encoder — 1 T t

conv prompt encoder

image T t T t

embedding mask  points box text

SAM Architecture [9]

, Score

== |, score

, score

valid asks

.o‘\
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SAM Architecture — Mask Encoder ﬂ(".

® Mask encoder
® 2D CNN with downscaling
® Special “no-mask” embedding
u Point-wise sum with image embedding (+)

mask decoder — ,_.,A’ :
image | . T ‘
encoder - 1 T

‘conv' prompt encoder

image | T t f t

embedding Mask  points  box text

SAM Architecture [9]

S e

valid masks

'o‘\
81 November 10, 2025 Deep Learning for Computer Vision Il: Advanced Topics cv:hci @KIT

Computer Vision for
Human-Computer Interaction



SAM Architecture — Mask Decoder ﬂ(".

@ Really light-weight - Must be fast and interactive!
® Encoder is slow (but powerful) but is ran only once over the image
® Inputs
® Prompts
® Output tokens (+) Prompt tokens
® Output tokens: Force model to put the output in this token
® 3 segmentation mask predictions
® loU per mask
® Image (+) Mask

, Score

mask decoder —
image | . T
encoder 1 T

‘conv' prompt encoder

image T t f T

embedding Mask  points | box text

SAM Architecture [9]

== |, score

, score

Output Tokens
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SAM Architecture — Mask Decoder

® Forward Pass

® Self-attention

® [Prompt tokens (+) Output tokens] (gg}i‘fg‘ijgﬁ)
® Cross-attention (token-to-image)

® Query: Tokens

® Keys, Values: Image Embedding output fokens
® Linear MLP R x256)
® Cross-attention (image-to-token)

® Query: Image Embeddings

® Keys, Values: Tokens

® Why 2 Cross-attention blocks?

® 2 outputs from decoder

AT

Karlsruhe Institute of Technology

: = dot product
image to token attn. | 7% per mask
conv. (o) masks
mlp | trans.
utput
token
token to image attn. | per mask
= token oU mlp
to image output
self attn. | attn. token 1 IoU
mlp ——_ ]
scores

mask decoder

SAM Decoder Architecture [9]

® Attended sequence of prompt tokens > Used to produce the output tokens and predicted loU scores
® Attended Image embedding - Combined with output tokens to produce the 3 masks
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SA-1B Dataset

® 1 billion masks from 11 million images
® 4 stages

® Small interactive pre-training on public datasets
® Robot user
® 50% chance - uniform random sampling of 8 iterative clicks
® 50% chance - GT bounding box +- some perturbation
® Manual
® Warm-up interactive annotation with clicks/bounding boxes
® Manual corrections to predictions
® Fine-tune SAM on its own (corrected) predictions
® Semi-automatic
@ SAM is applied to whole dataset
® Most confident predictions are filled out and shown to annotators
® Annotators fill out additional low-confidence objects
® Automatic
® 32x32 points grid of image are used as clicks
® 1024 predictions are aggregated to form more stable masks
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SAM Examples ﬂ(".
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® General notion of a “thing”
@ Associates spatial with semantic context

Examples from https://segment-anything.com/

.o'\
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SAM2 — Videos! AT
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Source: https://ai.meta.com/sam?2/
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SAM3 - Concepts! (coming in the next weeks) ﬂ(".

PROMPTABLE CONCEPT SEGMENTATION

a striped cat 5‘ a round ceII S A small window
v - ~ ! Y
e & F s

Prompts: noun phrase and/or positive D or negatlve § 3 image exemplar

Source: https://docs.uItraIvtlcs.Com/models/sam-3/
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DIFFERENCES TO OTHER
LEARNING PARADIGMS
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Differences to Other Paradigms ﬂ(".

] Uses weak annotations as
Supervised a learning signal

Learning

Weakly-supervised
Learning

Uses weak annotations as

Requires full labels guidance signal
in the first stages

Requires full labels
in all stages

Learns data-interaction

Interactive patterns to recognize

Learning unseen objects Uses patterns of known semantic
Unveils embeddings to recognize unseen objects
data-interaction
patterns Zero-shot learning

Mixes labelled and
continuously annotate
the unlabelled data
for further fine-tuning

Unveil patterns i

the data Mixes labelled

and unlabelled data

Unsupervised : -
Learning Semi-supervised

Learning
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Constellations in Interactive Segmentation A\‘(IT

Contim‘arning ' Representaii n Learning _ Intelretability
Domain Adaptation : I .
Interactive Segmentation Weakly *i'sed Learning

™ V- = v
TransferjLearning S e a9e
Generati‘ Models : :
. _ . . Visual Transformers
Semi-supervised Learning . '
* : Zero-Sh‘earning |

Few-ShotLearning
‘ ; ; Efficie*works
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