
KIT – The Research University in the Helmholtz Association www.kit.edu

Deep Learning for Computer Vision II: Advanced Topics

Interactive Segmentation (held by Zdravko Marinov)



Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 20252

Motivation

5000 train + test images to 

annotate in total
How much time?

Cityscapes image: 1.5h annotation time [5]

(1024 x 2048 pixels)
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Motivation

5000 train + test images to 

annotate in total
Cityscapes image: 1.5h annotation time [5]

(1024 x 2048 pixels)

312.5 days 24/7

Or 4 work years!!!

Do we really need to click all 1024x2048 pixels?
→ No! Solution: Interactive Segmentation
→ Only 2-3 clicks per object are needed!

Annotation time is reduced significantly!
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Definition of Interactive Segmentation

Components in Deep Interactive Segmentation
Type of Interaction 

Guidance Signal

Robot User

Active Learning

Evaluation Metrics

Applications
Natural Images

Medical Image Analysis

Segment Anything Model (SAM)

November 10, 20256

Outline
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Definition of Interactive Segmentation [1]

Definition:
Interactive segmentation describes an iterative feedback loop, where user-provided corrections to the 
model’s output inform subsequent predictions, leading to updated predictions. User guidance is 
provided in the form of, e.g., clicks, scribbles, or other interactions. 
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Definition of Interactive Segmentation [1]

Image adapted from: Jain, Suyog Dutt, and Kristen Grauman. "Click carving: Interactive object segmentation in images and videos with point clicks." International Journal of Computer Vision 127 (2019): 1321-1344.

Segmentation 

Model

Examples: 

CNN, ViT, K-means clustering

Non-interactive Segmentation

Definition:
Interactive segmentation describes an iterative feedback loop, where user-provided corrections to the 
model’s output inform subsequent predictions, leading to updated predictions. User guidance is 
provided in the form of, e.g., clicks, scribbles, or other interactions. 
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Definition:
Interactive segmentation describes an iterative feedback loop, where user-provided corrections to the 
model’s output inform subsequent predictions, leading to updated predictions. User guidance is 
provided in the form of, e.g., clicks, scribbles, or other interactions. 

November 10, 20259

Definition of Interactive Segmentation [1]

Click Initialization

“Cat” Click “Background” Click

Iteration 1

Image adapted from: Jain, Suyog Dutt, and Kristen Grauman. "Click carving: Interactive object segmentation in images and videos with point clicks." International Journal of Computer Vision 127 (2019): 1321-1344.

Segmenta

tion Model

Segmenta

tion Model

Iteration 2

Segmenta

tion Model

Iteration 3

Segmenta

tion Model

Iteration 4

Interactive Segmentation
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Domains of Interactive Segmentation

Image & Video Editing
Source: https://medium.com/gifs-ai/interactive-segmentation-with-convolutional-neural-networks-2e171a85df82

Rapid Image Annotation [6]

Tumour Segmentation in PET/CT [7]

(Previous Master Thesis at CV:HCI, 2023)

Full-body Anatomy Segmentation [8]
Source: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-auto-segmentation.html

Object Instance Retrieval [9]
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Classical approaches

Active Contours

Graph Cut

Deep Learning-based approaches

November 10, 202511

History
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Active Contours [3]

Magnetic Lasso (Adobe Photoshop)

User-drawn scribble (red curve) is moved along the gradient vector field 

Scribble “snaps” to the object boundary

Contour (also called a snake) minimizes the energy functional
Eint → Internal energy: enforces the contour to be smooth and without sharp edges

Eimage → Image Gradient: attracts the contour towards local minimums in the gradient field (edges)

Econ → Users can drag the edges of the contour → Additional constraint to force the curve to obey the user interactions

November 10, 202512

Classical Approaches

GIF Source: https://www.clydepixel.com/blog/photoshop-tips-tricks-beginners-magnetic-lasso-tool/

Image Source: https://iacl.ece.jhu.edu/Projects/gvf/
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Graph Cut [4]

Represent image + scribbles as graph

Each pixel in the image is a vertex

Additional S vertex for the object and T for the background

Edges are defined for all pairs of pixels

All marked “Llama” pixels have an infinite weight to S

Same for all “Background” pixels to T

Other edges: 

Small weight if colour difference or distance to other pixel is large

Segmentation boils down to computing the minimum cut

November 10, 202513

Classical Approaches

Images Sources: https://www.datasciencecentral.com/interactive-image-segmentation-with-graph-cut-in-python/

Llama 

(red)

Background 

(blue)
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Classical approaches:

Rely solely on appearance features

Do not incorporate any semantic meaning

Struggle with weak boundaries 

Or multiple similar objects next to each other (herd of llamas)

Difficult to encode prior knowledge such as shapes and textures of segmentation targets

No redundancies in the representations

Small variations in appearance lead to large prediction variations

Solution:
Deep Learning-based approaches

November 10, 202514

Deep Learning-based Approaches
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Deep Learning-based Interactive Segmentation

All components are here… Let’s build an interactive model together!

Bounding boxClicks Scribbles Boundary Polygon

Types of Interactions Guidance Signal

Robot User Active Learning
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TYPES OF INTERACTIONS
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The way the user communicates with the model

Click

A point* ci = (xi, yi)

Scribble

Set of n points S = {c1, c2,…,cn}

Bounding box

Points representing a rectangular region

Can be parametrized by two points (top left, bottom right), initialized by user

Boundary polygon

Sequence of m vertices P = {v1, v2,…, vm} lying on the boundary of the object

User interactions are to put and drag them to correct positions

Other interactions (rarely used)

Examples: Eye gaze, text prompts

November 10, 202517

Types of Interactions

Bounding boxClicks Scribbles Boundary Polygon

Types of Interactions

*2D or 3D depending on image dimension 
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Click
A point* ci = (xi, yi)

Pros
Quick

Precise

Can be placed in tight spots to correct small errors

Easy to simulate during training

Center of largest object / error

Extreme points

Random click

Cons
Ambiguous

Not always clear what the user intends

Precise, but low amount of information

May require many clicks for complex objects

November 10, 202518

Clicks

Source: SimpleClick [10], CVPR 2023

Ambiguity in clicks

Click annotation example

Source: PhraseClick [11], ECCV 2020

Source: Latent Diversity [12], CVPR 2018
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Scribble
Set of n points S = {c1, c2,…,cn}

Pros
Flexible and precise

Can approximate any shape

Low ambiguity due to its expressiveness

Cons
Simulations are possible but introduce a “user shift”

User shift: Discrepancy between simulated interactions during training and real interactions during evaluation

Occurs due to the larger flexibility and “infinite” ways to simulate it

Takes slightly more time to draw

November 10, 202519

Scribbles

Source: MiVOS [13], CVPR 2021

Scribble annotation example
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Bounding Box
Points representing a rectangular region

Pros
Quick 

Requires 2 – 4 clicks

Localizes the context

Model can ignore everything outside the box

Easy to simulate

Can be represented in many ways

Top-left, bottom-right points

Extreme points: the farthest left, right, top, and bottom points.

Cons
Low precision

Bounding box contains background information as well

November 10, 202520

Bounding Boxes
Bounding box annotation example

Source: https://blog.redbrickai.com/blog-posts/fast-meta-sam-for-medical-imaging

Source: Inside-Outside Guidance [15], CVPR 2020

Source: Deep Extreme Cut [14], CVPR 2028

Top-left, bottom-right

Extreme Points
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Boundary Polygon
Sequence of m vertices P = {v1, v2,…, vm} lying on the boundary of the object

Pros
Gives control to the user to exactly fit the boundary and correct the initial prediction

Cons
Takes more time to drag all vertices to the correct position

Difficult to simulate

Many possible ways to correct a vertex

November 10, 202521

Boundary Polygons
Boundary polygon annotation example

Source: Polygon RNN+ [16], CVPR 2018
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Text prompts:

Intuitive

Can eliminate ambiguity of clicks when combined

November 10, 202522

Other Types of Interactions - Text

Source: SAM [9]

Source: PhraseClick [11]

Source: Guide Me [17]
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Gaze := Eye Tracking
Follow gaze direction and segment that area

Intuitive

Very Quick

Removes the need of touch

E.g. touching a screen in a surgery room

Or splitting attention while driving

November 10, 202523

Other Types of Interactions – Eye Gaze

Source: https://www.tobii.com/learn-and-support/get-started/what-is-eye-tracking

Source: GazeSAM [18[

Source: GazeSAM [18[
Source: GazeSAM [18[
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GUIDANCE SIGNAL
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Now that we know which interactions we have

How do we integrate that into the segmentation model?

November 10, 202525

Guidance Signal

Segmentation 

Model

Bounding boxClicks Scribbles Boundary Polygon

How are these clicks “presented” to the model?
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Interactions as Guidance Signals

“A guidance signal is a representation of the user interactions in a form in which the model can 
process it. This can be an explicit representation that involves transforming the user interaction into 
an additional structured input for the model to process and learn from [...] or implicit, where user 
interaction information is subtly integrated into the model’s learning process without the provision of 
explicit structured input.”

November 10, 202526

Guidance Signal Definition [1]
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Explicit Guidance Signals

Additional structured inputs to the model

Deterministically computed from the interactions or interactions + image 

November 10, 202527

Guidance Signals Examples (Explicit)

Guidance Signal
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Click-based explicit Guidance Signals
Gaussian Heatmaps and Disks

Locally encode the clicks

New clicks do not change the previous signal but are just pasted on top

Euclidean or Geodesic Map

Encode the minimum Euclidean or Geodesic distance to the set of clicks

New clicks require to recompute the whole guidance signal

Geodesic Distance := Euclidean + “Appearance” distance

Larger distance if there are large intensity changes

Similar to the Graph Cut [4] idea

Location Prior [20]

Start from 255

Reduce by 10 if you cross and edge 

Attraction Field [19]

Model attraction field of punctual electric charges

Many others…

November 10, 202528

Guidance Signals Examples (Explicit) [1]
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Scribble-based explicit Guidance Signals

Same as with clicks but applied over set of points (scribbles)

Scribbles are usually simulated by skeletonizing the ground-truth mask

Replicate brush strokes

November 10, 202529

Guidance Signals Examples (Explicit) 

Source: Wong, Hallee E., et al. "ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Medical Image." arXiv preprint arXiv:2312.07381 (2023).

Source: Marinov, Zdravko et al. “Deep Medical Interactive Segmenation: A Systematic Review and Taxonomy” [1]



Deep Learning for Computer Vision II: Advanced Topics

Implicit Guidance Signals
Encoded without a tangible entity

Analogy: Explicit signals are “things”, Implicit signals are “actions”

Examples:

In the loss function

Higher loss in missegmentations near interactions → Force the model to “listen” to the interactions

In the input pre-processing

Use bounding box to crop the image and feed only crop to the model

November 10, 202530

Guidance Signals Examples (Implicit) 
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Implicit Guidance Signals
Encoded without a tangible entity

Analogy: Explicit signals are “things”, Implicit signals are “actions”

Examples:

In the loss function

Higher loss in missegmentations near interactions → Force the model to “listen” to the interactions

In the input pre-processing

Use bounding box to crop the image and feed only crop to the model

November 10, 202531

Guidance Signals Examples (Implicit) 

Takeaway: Guidance Signals are “things” or 

“actions” that transform the user interactions 

in a way that the model can process them
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ROBOT USER
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Robot User - Motivation

5000 train + test 

annotations

How was the model trained before annotating the 5000 images?

Deep neural networks are data hungry so it requires a much larger training set

Segmentation 

Model

Application Phase
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Robot User - Motivation

5000 train + test 

annotations

How was the model trained before annotating the 5000 images?

Deep neural networks are data hungry so it requires a much larger training set

Minimum 100.000 clicks → Still a lot and quite expensive

Solution: Simulate the clicks (Robot User)!

Segmentation 

Model

Application PhaseTraining Phase

Training Dataset

100.000 images with pixelwise labels

1 click per car

Segmentation 

Model
Training 

Loss
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Definition [1]: “A simulated model that mimics the behaviour of a real human annotator. The robot user 
leverages ground-truth labels to simulate user interactions at plausible locations.” 

November 10, 202535

Robot User

Input image

Ground-truth label

Guidance Signal

Prediction
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Robot User I

Input image

Ground-truth label

Guidance Signal

Prediction

I

Robot user generates an initial click
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Robot User II

Input image

Ground-truth label

Guidance Signal

Prediction

II

Interactive model predicts based on image + guidance signal
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Robot User III

Input image

Ground-truth label

Guidance Signal

Prediction

III

Robot user generates a refinement click in the missegmented area
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Robot User II

Input image

Ground-truth label

Guidance Signal

Prediction

II

Interactive model predicts based on image + guidance signal
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Robot User III

Input image

Ground-truth label

Guidance Signal

Prediction

III

Robot user generates a refinement click in the missegmented area
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Robot User II

Input image

Ground-truth label

Guidance Signal

Prediction

II

Interactive model predicts based on image + guidance signal
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Robot User IV

Input image

Ground-truth label

Guidance Signal

Prediction

IV

Compute loss after gathering all clicks and update model

Segmentation 

Loss

Backprop

Interactive models are usually updated after ALL prediction steps are performed
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Question: How could the robot user decide where exactly to put new 
interactions, for example clicks (steps I and III)? 

November 10, 202543

Discuss with your neighbour (3 min)

I

Robot user generates an initial click

III

Robot user generates a refinement click in the missegmented area
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How does the robot user decide where to put new interactions (steps I and III)?

For clicks → Most often: center of ground-truth or center of error

November 10, 202544

Robot User

Ground-truth

Prediction

Step I

Step III

Error New Click

New Click
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Many different strategies for generating clicks from ground-truth (GT) and errors
Center of GT/error

Random click in GT/error
Uniform sampling

Distance transform-based sampling
Distance transform used as prior sampling distribution

Click is near the center but not “exactly” in the center

Serves as regularization

Stratified sampling
Sample only clicks near the boundary

Sample clicks along longest axis

The generated clicks can be perturbed
Random X,Y shift to simulate user error

No user knows where exactly the center is

Acts as a regularization

November 10, 202545

Robot User - Clicks

Stratified Boundary Sampling [24] Ground-truth MaskStratified Long Axis Sampling [23]

Error Euclidean 

Distance Transform
New sampled click
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Most often simulated through skeletonization of GT mask

Skeleton := set of pixels within the mask which are maximally distant from the mask boundary

Other option: 

Boundary contours → 1-pixel wide boundary of the GT mask

November 10, 202546

Robot User - Scribbles

Source: Wong, Hallee E., et al. "ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Medical Image." arXiv preprint arXiv:2312.07381 (2023).

Source: Marinov, Zdravko et al. “Deep Medical Interactive Segmenation: A Systematic Review and Taxonomy” [1]

Image Input Mask Contours
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Robot User – Bounding Box

Typically, non-iterative

Only one prediction step

Simulated bounding box is either

Perfect := GT Box

Perturbed := Randomly shifted in X, Y directions to simulate user error

Regularizes the model

Relaxed := Extended by some margin to include more context

Perfect Perturbed Relaxed
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Robot User – Boundary Polygon

Worst vertex correction [25]

The vertex with the largest error is “dragged” to the correct position

Often with its k-neighbours

Source: Tian, Zhiqiang, et al. "Graph‐convolutional‐network‐based interactive prostate segmentation in MR images." Medical physics 47.9 (2020): 4164-4176.
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During training

Simulate interactions for a large amount of images

Typically infeasible to do with real annotators → simulate it

During evaluation

Simulate an annotator using the interactive model

Instead of conducting time-intensive and expensive annotation studies

November 10, 202549

When to use a Robot User?
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During training

Simulate interactions for a large amount of images

Typically infeasible to do with real annotators → simulate it

During evaluation

Simulate an annotator using the interactive model

Instead of conducting time-intensive and expensive annotation studies

What is a potential problem when doing this?

November 10, 202550

When to use a Robot User? (3 min)
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Evaluation with Robot User

Two routes to evaluating an interactive model

Conduct a user study with real human experts 

• Usually on a small sample size and few annotators

• The evaluated performance is the REAL performance when used by experts

Simulate the interactions on a test dataset

• Usually the test split of a public dataset

• Since it is simulated, sample size can be quite large

• Most current approaches go down this route and use a Robot User during evaluation

Are these simulations realistic?

Would the results be the same as a real user study?
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Evaluation with Robot User

Comparison of 4 popular robot users and a real user study

8 medical annotators from various backgrounds

External collaboration with University Clinic Essen, AI for Medicine (IKIM)

Dataset: AutoPET, n=20 volumes

THIS is what you would report 

if you use off-the-shelf 

simulation methods

“Our method is SOTA and 

is awesome and great! 

Just look at the numbers!”

Marinov, Zdravko, et al. "Rethinking Annotator Simulation: Realistic Evaluation of Whole-Body PET Lesion Interactive Segmentation Methods." MICCAI 2024.
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Evaluation with Robot User

Comparison of 4 popular robot users and a real user study

8 medical annotators from various backgrounds

External collaboration with University Clinic Essen, AI for Medicine (IKIM)

Dataset: AutoPET, n=20 volumes

THIS (black lines) is what

is actually the performance 

in a real user study

(same model, same data)

Marinov, Zdravko, et al. "Rethinking Annotator Simulation: Realistic Evaluation of Whole-Body PET Lesion Interactive Segmentation Methods." MICCAI 2024.
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ACTIVE LEARNING



Deep Learning for Computer Vision II: Advanced TopicsNovember 10, 202555

Active Learning for Interactive Segmentation [26]

Two types of active learning

Focused on data annotation

Focused on model refinement
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Active Learning for Data Annotation [26]

Annotators label a few samples (annotation budget) with interactive segmentation

Model is trained on annotation budget

Predicts on the rest of unlabelled data

“Most informative samples” are selected for further annotation and added to annotation budget

All steps are repeated until the model reaches a certain performance on an independent test dataset

In the end:

Most important samples are labelled and can be used for model training

A model is already trained well and can be deployed 
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Most Informative Sample

What is an “informative” sample?

Informative := Adding annotations to it would benefit the model training
Idea := Select only top N informative samples instead of all unannotated samples

Metrics for informativeness:

Most often associated with prediction uncertainty [27]

Ensembles

MC-Dropout

Test-time augmentation

Auxiliary network
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Most Informative Sample [28]

Most often associated with prediction uncertainty [27]

Ensembles

MC-Dropout

Test-time augmentation

Auxiliary network

Variance of model predictions

Ensemble of 3 different models

Variance of model predictions

Predictions from same model 

with different “deactivated” weights

x

xx

xx

x

x

x
x

Variance of model predictions

Predictions from same model 

with same augmented input

Train a special auxiliary network

to predict the uncertainty

Ensembles MC-Dropout Test-time augmentation Auxiliary network

Image Source: Wang, Guotai, et al. "Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks." Neurocomputing 338 (2019): 34-45.
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Active Learning for Model Refinement [26]

Goal: Improve model, not annotate more data

Same sampling selection strategies as for Data Annotation 

Most informative samples or hard-sample mining (worst model performance)

Final goal is to deploy a robust model
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CONSTRUCTING THE 
INTERACTIVE PIPELINE
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Deep Learning-based Interactive Segmentation

All components are here… Let’s build an interactive model together!

Bounding boxClicks Scribbles Boundary Polygon

Types of Interactions Guidance Signal

Robot User Active Learning
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Working Example

All components are here… Let’s build an interactive model together!

Clicks

Type of Interaction Robot User Active LearningGuidance Signal

Center of Object (I) / Error (III)

Focused on Data Annotation

Sample Selection: MC Dropout

Gaussian Heatmaps
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Working Example

Cat Images: https://www.kaggle.com/datasets/crawford/cat-dataset

100 labelled cats

90 train / 10 test

Training Phase
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Working Example

100 labelled cats

90 train / 10 test

Cat Images: https://www.kaggle.com/datasets/crawford/cat-dataset

Simulate central clicks for steps I and III

For each cat image: Simulate 10 iterative clicks

Update model after the 10th click 

10 x 100 = 1000 forward passes per epoch!

Interactive training is inherently slow!

(linearly slower than non-interactive)

Training Phase
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Working Example

100 labelled cats

90 train / 10 test

Cat Images: https://www.kaggle.com/datasets/crawford/cat-dataset

Simulate central clicks for steps I and III

For each cat image: Simulate 10 iterative clicks

Update model after the 10th click 

10 x 100 = 1000 forward passes per epoch!

Interactive training is inherently slow!

(linearly slower than non-interactive)

Application PhaseTraining Phase

10.000 unlabelled cats

x

xx

xx

x

x

x
x

Compute Uncertainty for all 10.000 images

Provide top 50 for 

interactive annotation with 

clicks

(Annotator can make 

as many clicks as wanted, 

not exactly 10)

Fine-tune model with new

50 annotations
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After annotating 500 / 10.000 cats, the model starts to produce almost 
perfect segmentations for all cats!

We have both a good model for cats

and 10.000 annotated cats for more training

November 10, 202566

Working Example

Cat Images: https://www.kaggle.com/datasets/crawford/cat-dataset

Demo model: https://segment-anything.com/demo

https://www.kaggle.com/datasets/crawford/cat-dataset
https://www.kaggle.com/datasets/crawford/cat-dataset
https://www.kaggle.com/datasets/crawford/cat-dataset
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Segmentation Performance

NoC@90

Number of Clicks (NoC) at 90% performance (typically IoU or Dice)

IoU@10 or Dice @10

IoU or Dice at 10 clicks

NoC / IoU curves

NoC / Dice curves

Consistent Improvement (CI)
% of iterations where adding an interaction improves the segmentation

November 10, 202567

Evaluation Metrics
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Usability

User Time

Time it takes to annotate an image in seconds

Machine Time 

Inference time for an image

Scribble Length

Mean number of pixels in scribbles

NASA-TLX Score

Perceived workload in terms of mental demand, frustration etc.

System Usability Scale (SUS)

Likert-scale questionnaire to quantify usability

November 10, 202568

Evaluation Metrics
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APPLICATION IN MEDICAL 
IMAGE ANALYSIS
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Similar to natural images

With a few differences

November 10, 202570

Application in Medical Image Analysis

Segmentation 

Model

Application PhaseTraining Phase

Training Dataset

100.000 images with pixelwise labels

Segmentation 

Model
Training 

Loss
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Application in Medical Image Analysis

Segmentation 

Model

Application PhaseTraining Phase

Training Dataset

100.000 images with pixelwise labels

Segmentation 

Model
Training 

Loss

Differences

Annotators are 

medical experts
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Application in Medical Image Analysis

Segmentation 

Model

Application PhaseTraining Phase

Training Dataset

100.000 ~100-600 images with pixelwise / 

voxelwise labels

Segmentation 

Model
Training 

Loss

Differences

Annotators are 

medical experts

Datasets have fewer

training samples

but consist of 3D images in

radiology (CT, MRI)

Medical imaging modalities are diverse

CT MRI

CT: Computed tomography

MRI: Magnetic Resonance Imaging

3D Images

Ultrasound

Grayscale RGB

Dermoscopy Endoscopy

Gigapixel Images

Microscopy

3D images are seen 

as a sequence of 

2D “slices”
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Medical Data Example: 3D CT Images

100 labelled livers in CT 

90 train / 10 test

CT Images: https://github.com/bowang-lab/MedSAM/blob/main/assets/MedSAM_supp.pdf

Simulate central clicks for steps I and III

For each cat image: Simulate 10 iterative clicks

Update model after the 10th click 

10 x 100 = 1000 forward passes per epoch!

Interactive training is inherently slow!

(linearly slower than non-interactive)

Application PhaseTraining Phase

10.000 300 unlabelled livers

Compute Uncertainty for all 10.000 images all slices of the current CT image

Provide top 50 for 

interactive annotation with 

clicks

Fine-tune model with new

50 annotations

Provide slice with highest 

uncertainty

Update prediction but keep 

model frozen
(updates usually corrupt the model)

Repeat until clinician is 

satisfied and then move on 

to next CT volume
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SEGMENT ANYTHING 
MODEL (SAM)
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Interactive Segmentation at a scale

Pre-trained on 1 billion masks from 11 million images

First model towards a foundation segmentation model

Great zero-shot performance

Notion of “thing”

Interaction Types

Click, Bounding Box, Text

November 10, 202576

Segment Anything Model (SAM)
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Image encoder

Mask encoder

Prompt encoder

Mask decoder

November 10, 202577

SAM Architecture – Components

SAM Architecture [9]
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Image encoder

Pre-trained Masked Autoencoder ViT-H [29]

256-dimensional representation of the image

Large and heavy but powerful

Needs to be ran only once per image!

November 10, 202578

SAM Architecture – Image Encoder

Masked Autoencoder Training [29]

SAM Architecture [9]
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Prompt encoder

Text

CLIP text encoder [30]
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SAM Architecture – Prompt Encoder

SAM Architecture [9]

Reminder: CLIP [30]
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Prompt encoder

Points (x, y) + Label (foreground / background)

(x, y) → Positional Encoding (256-dim) → Summed with “foreground” or “background” learnable 
weights 

Bounding Box 

(x, y)top left (x, y)bottom right 

Positional embeddings → Summed with “top-left” and “bottom-right” learnable weights

SAM learns internally how to understand these prompts!

Positional encoding → Spatial location

“foreground”, “background”, “top-left”, “bottom-right” weights → Prompt meaning

November 10, 202580

SAM Architecture – Prompt Encoder

SAM Architecture [9]
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Mask encoder

2D CNN with downscaling

Special “no-mask” embedding

Point-wise sum with image embedding (+)

November 10, 202581

SAM Architecture – Mask Encoder

SAM Architecture [9]
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Really light-weight → Must be fast and interactive!

Encoder is slow (but powerful) but is ran only once over the image

Inputs

Prompts 

Output tokens (+) Prompt tokens

Output tokens: Force model to put the output in this token 

3 segmentation mask predictions

IoU per mask

Image (+) Mask

November 10, 202582

SAM Architecture – Mask Decoder

SAM Architecture [9]
Output Tokens

Not shown in original image

(omitted for clarity)
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Forward Pass
Self-attention 

[Prompt tokens (+) Output tokens]

Cross-attention (token-to-image)

Query: Tokens

Keys, Values: Image Embedding

Linear MLP

Cross-attention (image-to-token)

Query: Image Embeddings

Keys, Values: Tokens

Why 2 Cross-attention blocks?
2 outputs from decoder

Attended sequence of prompt tokens → Used to produce the output tokens and predicted IoU scores

Attended Image embedding → Combined with output tokens to produce the 3 masks

November 10, 202583

SAM Architecture – Mask Decoder

SAM Decoder Architecture [9]
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1 billion masks from 11 million images
4 stages

Small interactive pre-training on public datasets
Robot user 

50% chance → uniform random sampling of 8 iterative clicks
50% chance → GT bounding box +- some perturbation

Manual
Warm-up interactive annotation with clicks/bounding boxes

Manual corrections to predictions
Fine-tune SAM on its own (corrected) predictions

Semi-automatic
SAM is applied to whole dataset

Most confident predictions are filled out and shown to annotators
Annotators fill out additional low-confidence objects 

Automatic
32x32 points grid of image are used as clicks
1024 predictions are aggregated to form more stable masks

November 10, 202584

SA-1B Dataset

SAM Automatic Stage
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SAM Examples

Examples from https://segment-anything.com/ 

General notion of a “thing”

Associates spatial with semantic context

https://segment-anything.com/
https://segment-anything.com/
https://segment-anything.com/
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SAM2 – Videos!

Source: https://ai.meta.com/sam2/ 

https://ai.meta.com/sam2/
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SAM3 - Concepts! (coming in the next weeks) 

Source: https://docs.ultralytics.com/models/sam-3/ 

https://docs.ultralytics.com/models/sam-3/
https://docs.ultralytics.com/models/sam-3/
https://docs.ultralytics.com/models/sam-3/
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DIFFERENCES TO OTHER 
LEARNING PARADIGMS
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Differences to Other Paradigms

Interactive 

Learning

Supervised 

Learning

Requires full labels

in the first stages

Unsupervised 

Learning

Unveil patterns in

 the data 

Requires full labels

in all stages

Unveils 

data-interaction 

patterns

Semi-supervised 

Learning

Mixes labelled 

and unlabelled data

Mixes labelled and 

continuously annotates 

the unlabelled data 

for further fine-tuning

Weakly-supervised 

Learning

Uses weak annotations as 

guidance signals

Uses weak annotations as 

a learning signal

Zero-shot learning

Learns data-interaction

patterns to recognize 

unseen objects
Uses patterns of known semantic

embeddings to recognize unseen objects 
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Constellations in Interactive Segmentation

Interpretability

Uncertainty

Weakly supervised Learning

Vision and Language

Zero-Shot Learning

Generative Models

Representation Learning

Semi-supervised Learning

Transfer Learning

Few-Shot Learning

Continual Learning

Domain Adaptation

Visual Transformers

Efficient Networks

Interactive Segmentation Clicks, Scribbles

Bounding Boxes
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