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Abstract

Object information is an important cue to discriminate
between activities that draw part of their meaning from con-
text. Most of current work either ignores this information
or relies on specific object detectors. However, such object
detectors require a significant amount of training data and
complicate the transfer of the action recognition framework
to novel domains with different objects and object-action
relationships. Motivated by recent advances in saliency de-
tection, we propose to employ salient proto-objects for un-
supervised discovery of object- and object-part candidates
and use them as a contextual cue for activity recognition.
Our experimental evaluation on three publicly available
data sets shows that the integration of proto-objects and
simple motion features substantially improves recognition
performance, outperforming the state-of-the-art.

1. Introduction

To recognize actions and activities is an important com-
ponent of many computer vision applications such as, for
example, human-robot interaction, surveillance, and multi-
media retrieval. While many approaches are designed to
classify simple actions — i.e., “motion events” — such as
“standing up” or “walking” [21], the focus of our work lies
on the recognition of complex action sequences that are also
known as “activities”.

Following action identification theory [36], an action
(and thus activity) derives its meaning from the context and
not from the motion alone. Such contextual information
may involve, among others, the state of the actor’s mind, the
location where the action takes place, as well as the objects
that are manipulated by the actor. However, most works in
action and activity recognition ignore contextual cues and
focus on the identification of activities based on motion pat-
terns alone (c.f. [1, 39]). On the other hand, approaches
that do incorporate object information usually depend on

detectors that require supervised training (e.g. [35, 16]).
Since the detectors require a substantial amount of manually
annotated training data, expanding such frameworks (e.g.,
adding new action classes) becomes the bottleneck for gen-
eralized tasks. As an alternative, we propose to use proto-
object features, which do not require any supervision, as a
contextual cue for activity recognition.

Attention forms a selective gating mechanism that de-
cides what will be processed at later stages (e.g., object
recognition) and is often described as a “spotlight” that en-
hances the processing in the attended, i.e., “illuminated”,
region [26]. Interestingly, experimental evidence suggests
that attention can be tied to objects, object parts, and/or
groups of objects [7, 31]. But, how can we attend to ob-
jects before we recognize them [37]? Rensink introduced
the concept of proto-objects in his coherence theory [30, 37]
and defined them as volatile units of visual information that
may be validated as actual objects through focused atten-
tion. In other words, proto-objects are object- or object-part
candidates that have been detected, but not yet identified.

Motivated by the ability of humans to reliably determine
such visually salient regions from the background, many
approaches have been proposed to detect proto-objects
with the least statistical knowledge of the objects them-
selves, e.g., [14, 37, 4, 12, 33]. Since visual attention and
object recognition are tightly linked processes in the human
visual system, there is an increasing interest in integrating
both concepts to increase the performance of computer vi-
sion systems. For instance, Walther and Koch [37] combine
an attention based system with SIFT-based object recogni-
tion and demonstrate that such an integration can improve
the overall performance. Other applications involve the
prediction of human gaze patterns [33], scene understand-
ing [12], and object detection [2].

In this work, we show that proto-object detection allows
us to find object candidate regions that can be used as a cue
for motion based activity recognition. We evaluate the pro-
posed features in combination with a simple bag-of-words
model [18] on three challenging data sets and demonstrate
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Figure 1. Overview of the proto-object detection approach. First, a QDCT-based saliency map and a graph-based image segmentation are
calculated. Then, the segments with the highest saliency are selected as object candidates. This illustration is best seen in color.

that our approach greatly increases the recognition rate.
This way, we are able to improve the state-of-the-art on the
KIT Robot-Kitchen [32], URADL [20], and CAD-120 [16]
data sets by 0.5%, 2.0%, and 4.3%, respectively.

2. Related work

In recent years, action and activity recognition in videos
have received an increasing amount of attention within the
computer vision community [21, 1, 39]. However, the ma-
jority of works neglects contextual information and focuses
on the recognition based on motion patterns alone [20, 18,

.42, 19].

Some simple ways to incorporate object knowledge is
by directly using ground-truth labels [17], and possibly
adding artificial noise to simulate imperfect detections [10]
or by attaching RFID Tags to all relevant objects [40]. Ap-
proaches that solely use image features to automatically
retrieve object information mostly rely on trained detec-
tors [16, 11, 35, 25, 27, 6]. But, building a robust detec-
tor handling all types of object classes is still challenging
and subject for future research.Thus, for each new domain
a dedicated detector needs to be trained instead, which re-
quires time and cost expensive data collection and annota-
tion. Furthermore, since different object states (e.g., opened
vs. closed fridge) also contain meaningful information, the
detectors also need to discriminate between states with high
accuracy.

To circumvent such shortcomings, approaches that can
automatically extract potentially relevant image regions
have been proposed. Ikizler-Cinbis and Sclaroff [13] as-
sume large moving regions as candidate objects. Similarly,
Packer et al. [23] rely on background subtraction in combi-
nation with articulated body tracking and assume that candi-
date objets are foreground regions that cannot be explained
by limbs. Furthermore, the hand regions are included in the
set of object candidates, since the hand can easily occlude
large parts of smaller objects. This way, most of the objects
that are being manipulated by the observed person can be
obtained. However, unlike in the presented approach, ob-
jects that remain static throughout most of the activity are
left unnoticed (e.g., the majority of the dishes located on the

table during the activity “eating dinner”).

One automatic approach to mine discriminative image
regions based on their strong correlations with the target
class is the grouplet [41]. However, this feature representa-
tion draws its power from grouping codewords and preserv-
ing their spatial configurations. Nonetheless, in activities of
daily living (e.g., kitchen related activities) the spatial rela-
tions between different objects involved in one activity are
often arbitrary.

Most related to our approach is the work of Prest et
al. [28], which employs an objectness measure to deter-
mine the most relevant region that is located close to the
actor. However, unlike our approach, their method is rel-
atively complex, only operates on still images, depends on
human detection [2], and only considers the object that is
part of the interaction.

3. Proto-Object Extraction

In the following, we describe how we use proto-objects
as object candidates to enrich motion descriptors with con-
textual image information for activity recognition. We
build our framework upon Schauerte and Stiefelhagen’s
(see [33]) quaternion-based spectral saliency detection al-
gorithm. Among the advantages of this approach are its
simplicity, theoretical soundness, high accuracy in predict-
ing foreground regions, and that it is fully unsupervised.
The algorithm extends Hou et al.’s [12] “image signature”
descriptor by employing a quaternion representation of an
image, which makes it possible to process all color chan-
nels simultaneously in a holistic fashion.

Hou et al.’s image signatures are defined as the signum
function of the Discrete Cosine Transform (DCT) of an im-
age. A saliency map can be obtained by applying an inverse
DCT to an image signature followed by smoothing with a
Gaussian kernel [12, 33]. It has been demonstrated theo-
retically and experimentally that this approach concentrates
the image energies on foreground regions [12]. We calcu-
late the saliency maps based on the CIE L*A*B color space,
since it has been shown to reliably yield better performance
than most other color spaces [33].

Peaks in a saliency map only indicate the positions of
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Figure 2. Representatives of the first 18 proto-object feature codebook entries for subject 1 of the URADL data set. The codewords were
selected based upon their Minimal-Redundancy-Maximal-Relevance score [24].

Input: Maximum saliency threshold # and maximal
number of segments to select K
Output: Set of detected proto-objects O
Find maximal saliency value sp.x;
Set 8" = smax; O = {};
while s’ > 0 - sy, AND |O] < K do
Set s’ to maximal saliency value;
Add image segment containing s’ to O;
Set saliency of the selected segment to O;
end

Algorithm 1: Detecting proto-objects.

the proto-objects, however the approximate spatial extent
of each proto-object region still needs to be determined.
One common approach is to operate on the saliency map
itself, e.g., by region growing or by thresholding [12]. Yet,
such a procedure is often highly sensitive to the choice of
the saliency detection parameters which directly influences
the size of the segmented proto-objects. Instead, we use the
saliency map to guide the proto-object selection directly in
the image, as shown in Fig. 1. First, we use Felzenszwalb’s
graph-based algorithm [9] to segment each frame of a video
sequence using parameters yielding preferably large image
segments (see Fig. 1(b)). In order to select a set of proto-
objects, we then apply Algorithm 1, which implements at-
tentional shifts and inhibition of return. In our experiments,
we empirically determined its parameters and set § = 70%
and K = 30.

To encode the appearance of the proto-object regions, we
use Dalal and Trigg’s Histograms of Oriented Gradients [5],
which proved — in preliminary experiments — to be supe-
rior to other popular feature descriptors such as, e.g., SIFT,
SURF, and ORB. Finally, we apply k-means clustering to
obtain a codebook for our proto-object based features. As
can be observed in Fig. 2, many of the codewords corre-
spond to real-world objects or object-parts that are mean-
ingful for activity recognition.

4. Activity Recognition

Since object knowledge alone is not enough information
to discriminate activities, we employ the well known Space
Time Interest Points (STIP) [18] as motion descriptors. To
this end, we use Laptev et al.’s Harris3d Interest Point de-
tection and as features we either use Histograms of Optical

Flow (HOF) alone or in combination with Histograms of
Oriented Gradients (HOG). It is noteworthy that the HOG
descriptor in this context differs from Dalal and Trigs’s orig-
inal HOG descriptor [5], because it is built through accumu-
lation of gradients within the spatio-temporal cuboid region
of a STIP. Thus, it can be seen more as a motion descriptor,
since it captures a moving region’s change of location, as
well as appearance.

A whole image sequence is represented as a bag-of-
words, using a 1000-element codebook for motion features
(HOF/HOGHOF), and a 200-element codebook for object
candidate features (proto-object based features/image seg-
ments, see Sec. 3). For simplicity, we use feature fusion
via concatenation when combining features from different
sources.

To classify a video, we utilize a linear multi-class Sup-
port Vector Machine (SVM) [15]. Since it is desirable for
subsequent algorithms (e.g., decision fusion or ranking) to
provide normalized confidence scores as classification re-
sult, we train a multinomial logit model on the training data
via cross-validation. This way, we can map the SVM’s out-
put (i.e., the distance to the hyperplane) to [0, 1].

It has been pointed out that the power transform of el-
ements in a feature vector F' makes the distribution of
the features uniform and this way increases the discrim-
intive power of F' [3, 29]. Thus, we first apply an L1-
normalization to F' and then raise each element of F' to the
power of . As suggested by Ren and Ramanan [29], we set
o = 0.3. Finally, all features are standardized to zero-mean
and unit-variance, since this feature scaling method proved
to yield robust results.

5. Experimental Evaluation

We evaluate our approach on three publicly available
benchmark data sets for activity recognition: URADL [20],
CAD-120 [16], and KIT Robo-Kitchen [32]. As evalua-
tion measure, we report the overall recognition accuracy.
Note that, the lack of training data in CAD-120 prohibit
us to robustly learn probability outputs for the classifier,
we only report the non-probabilistic version thereof. We
focus our evaluation on the aspect of how well the proto-
objects perform alone, and combined with motion features
(HOF and HOGHOF). To demonstrate the importance of
saliency driven object candidate selection, we also compare
to the case where all image segments from the segmenta-
tion step are used, and, for the URADL data set, the case



of using ground-truth object labels and supervised detec-
tors for selecting object candidates. These segments and
candidate objects are described with HOG in the same way
as with the proposed proto-object based features. Further-
more, we compare our feature representation with state-of-
the art activity recognition approaches to demonstrate its
effectivness.

5.1. URADL data set

The University of Rochester Activities of Daily Liv-
ing (URADL) data set [20] contains 150 high-resolution
videos of ten activities which are often similar in motion
and thus difficult to be separated without context knowl-
edge. Each activity is performed three times by five dif-
ferent subjects and the evaluation is done using leave-one-
person-out cross-validation.

To compare our method with approaches relying on ob-
ject detections, we annotated all images with the location of
the following twelve objects (we will make the annotations
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publicly available): “whiteboard”, “bottle”, “cup”, “plate”,
“crisps”, “phone”, “knifeblock”, “paperroll”, “phonebook”,
“peeled banana”, “banana”. The labels were used to train
state-of-the-art object detectors [8] (Mean Average Preci-
sion of 0.744), and to determine how well our approach
performs compared to using perfect object knowledge. In
order to incorporate such object information into our clas-
sification framework, we simply use the object classes as
codebook entries and calculate bag-of-words histograms.

The results from the experiments and a comparison with
state-of-the-art approaches are presented in Tab. 1. Using
our proto-objects combined with HOGHOF features yields
a perfect recognition accuracy, which is as good as us-
ing ground-truth object labels and outperforms state-of-the-
art [42] by 2.0%, reaching 100.0%. Also, the use of all im-
age segments without saliency-based region selection and
features based on the supervised object detectors perform
worse than the proposed method. Furthermore, combining
HOF with proto-objects clearly preforms better than com-
bined HOG and HOF features. This suggests that proto-
objects are a much better way to capture contextual infor-
mation than HOG encoded STIP. Surprisingly, HOF with
proto-objects also performs better than HOF with ground-
truth object labels, which might be because the approach
captures more regions that are relevant to the recognition
task.

5.2. CAD-120 data set

The Cornel Activity Dataset-120 (CAD-120) [16] con-
tains 120 RGBD videos (we only used the RGB channels)
of four subjects performing 10 activities (three repetitions,
each time using different objects). Some of the challenges
of this benchmark are big variations of camera-view an-
gles and recording locations within each activity class. For

Method Accuracy (%)
object detections 68.7
object labels 86.7
all segments 40.0
proto-objects 62.0
HOF 79.3
HOF & object detections 87.3
HOF & object labels 90.0
HOF & all segments 86.7
HOF & proto-objects 97.7
HOGHOF 94.0
HOGHOF & object detections 96.0
HOGHOF & object labels 100.0
HOGHOF & all segments 94.7
HOGHOF & proto-objects 100.0
Matikainen et al. [19], 2010 70.0
Messing et al. [20], 2009 89.0
Prest et al. [27], 2012 92.0
Wang et al. [38], 2011 96.0
Yi and Lin [42], 2013 98.0

Table 1. Performance results of different methods using a leave-
one-person-out testing paradigm on the URADL data set.

comparison, we use the same train-test split that is used in
the literature [16] and follow a leave-one-person-out cross-
validation protocol.

The results from the experiments and a comparison with
state-of-the-art approaches are presented in Tab. 2. As in
the experiments using the other two data sets, it can be ob-
served that combining proto-objects with motion features
clearly performs better than using motion features alone.
Furthermore, HOGHOF with proto-objects outperforms all
other approaches by at least 4.3% (relative improvement),
including Koppula et al.’s recently proposed state-of-the-
art method [16]. The only exception is the work of Koppula
and Saxena [ 7], which however relies on ground-truth ob-
ject tracks and is thus not comparable to our approach.

The confusion matrix in Fig. 3 reveals that most of the
problems of our approach lie in confusing activities in-
cluding similar motions and objects, such as “microwave”,
“clean-object” and “take-food”, all of which contain inter-
action with a microwave. To handle this problem, a fine
grained motion representation is required, which is left for
future work. Still, using proto-objects often helps in such
ambiguous situations. For instance, the recognition ac-
curacy of the activities “take-food” and “microwave” in-
creases by 17 and 25 percentage points, respectively, when
using HOGHOF with proto-objects compared to HOGHOF.

5.3. KIT Robo-Kitchen data set

The KIT Robo-Kitchen data set (KIT) [32] consists of
videos of 14 different activities, each performed by 17 dif-
ferent persons of which ten are used as training data and
the remaining seven serve as unseen data for testing. Un-
like other benchmarks, one of the challenges of this data
set is that the recognition is not based on clips spanning the
whole activity, but rather of all possible 150 frame long sub-
sequences of each video. The reasoning behind this is, that
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Figure 3. Confusion matrix for the CAD-120 data set when using
a combination of HOGHOF and proto-object features.

Method Accuracy (%)
all segments 40.3
proto-objects 39.5
HOF 66.9
HOF & all segments 71.0
HOF & proto-objects 74.2
HOGHOF 70.2
HOGHOF & all segments 75.0
HOGHOF & proto-objects 78.2
Sung et al. [34], 2012 26.4
Koppula et al. [16], 2013 75.0
Koppula and Saxena [17], 2013 83.1%*

Table 2. Performance results of different methods on the CAD-
120 data set. *Note that [17] is using ground truth object labels
and thus is not directly comparable to our approach.

the data set was designed to model the application of activ-
ity recognition in a household robot scenario, in which the
robot should offer his services long before the user is fin-
ished with the current activity. For a better comparison with
other works, we restrict our evaluation on the most popular
subset of the data, the setup room:door, which consists of
ten activity classes.

The results of the experiments are presented in Tab. 3.
Here, the combination of HOF with proto-object performs
better than all other methods, including the state-of-the-art
that is set by Onofri et al.’s recent approach [22], which
it surpasses by a small margin of 0.5% (relative improve-
ment). It is however surprising, that using proto-object
based features alone yields a comparatively high recogni-
tion rate. This may be explained with many activities in-
volving objects that are distinctive in their appearance. A
clear exception from this are “cut”, “peel”, which are in-
deed a major error source. A look at the confusion matrix
in Fig. 4 further supports this claim, which backs up the use-
fulness of proto-object based features as an additional cue
for activity recognition.

Output Class
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Figure 4. Confusion matrix for the KIT data set when using a com-
bination of HOF and proto-object features.

Method Accuracy (%)
proto-objects 70.4
HOF 85.6
HOF & proto-objects 88.7
HOGHOF 86.6
HOGHOF & proto-objects 88.5
Rybok et al. [32], 2011 84.9
Onofri et al. [22], 2013 88.3

Table 3. Performance results of different methods on the
room:door setup of the KIT data set.

6. Conclusion

We propose to use proto-object based features to encode
contextual information for activity recognition. The major
advantage of our approach is that it allows us to automat-
ically extract object candidates from images without any
need for annotated training data or motion information. In
an experimental evaluation on three realistic data sets, we
showed how well proto-objects complement simple motion
features and demonstrated the superior performance over
other state-of-the-art approaches. In our future work, we
plan to investigate how well a fine-grade motion represen-
tation can further help to discriminate between activities
involving similar objects and movements.
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