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Abstract

In computer vision, reconstructing realistic 3D face models has been a persistent chal-
lenge over the past years. Various techniques in different research domains have been
intensively studied in seeking to recover highly accurate deformable face models which
are robust against noise.

This work focuses on recovering the 3D structure and motion of deformable objects from
sequences of 2D feature points, which are taken by a monocular camera and these points
are either tracked using a reliable motion capture system or hand-labeled afterwards.
In recent years, considerable success has been achieved in this area for static scenes or
rigid objects. However, with the non-rigid scenario, the problem is underconstrained
and much more difficult than expected. Thus, we build a low-dimensional subspace
model to describe the deformation shape bases, which finds a balance between effec-
tive modeling and restricting the degrees of freedom. In order to factorize the 2D in-
put data into 3D structure and motion, a probabilistic framework is preferred to the
deterministic closed-form solutions because of its robustness against noise, which we
think is inevitable in real-world measurements. Therefore, our approach is based on a
derivation of Probabilistic Principal Component Analysis (PPCA). Parameters of shape
bases are distributed over a prior distribution, and learned or marginalized out by the
Expectation-Maximization (EM) algorithm iteratively. We further improve this proba-
bilistic model by endowing the shape parameter distribution with relational information
using Probabilistic Relational Principal Component Analysis (PRPCA).

We address the problem of recovering camera rotation. The orthonormality constraints
of the rotation matrices are also extensively studied. Instead of imposing numerical op-
timizations on the constraints, the internal geometric properties of the rotation matrices
are taken into account. The conventional Newton’s method for optimization problems is
extended to the Riemannian rotation manifold, which ultimately resolves the constraints
into free optimization on the manifold.

The system is evaluated on two real-world face datasets. Evaluation results of the PRPCA
extension gives evidence to the improved performance over the baseline algorithm when
modeling a universal model from multiple subjects. On the other hand, our manifold
based optimization technique outperforms the state-of-the-art approach in almost all
cases in the experiments. Robustness in handling noisy data shows the capability of our
system to deal with real-world image tracks.
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Kurzzusammenfassung

In der Computervision ist in den letzten Jahren die 3D-Rekonstruktion realistischer Ge-
sichtsmodelle eine ständige Herausforderung gewesen. Zu diesem Zweck wurden di-
verse Techniken in unterschiedlichen Forschungsbereichen untersucht, um sehr genaue
verformbare Gesichtsmodelle zu ermitteln, die robust gegen Rauschen sind.

Diese Arbeit konzentriert sich auf die Rekonstruktion der 3D-Struktur und Bewegung
verformbarer Objekte aus einer Sequenz von 2D-Merkmalspunkten, die durch eine mo-
nokulare Kamera aufgenommen werden. Die Merkmalspunkte werden entweder durch
ein zuverlässiges Bewegungserfassungssystem verfolgt oder von Hand nach der Auf-
zeichnung markiert. In den letzten Jahren wurden in diesem Bereich beachtliche Erfol-
ge für statische Szenen und starre Objekte erzielt. Für unstarre Fälle ist dieses Problem
allerdings nur schwach eingeschränkt und viel schwieriger als erwartet. Deshalb bau-
en wir auf einen effizienten niederdimensionalen Unterraum, der die Freiheitsgrade be-
schränkt, um die verformbaren Gesichtsmodelle darzustellen. Für die Faktorisierung der
2D-Eingabe in 3D-Struktur und Bewegung ist ein probabilistisches System der determi-
nistischen, analytisch geschlossenen Lösung vorzuziehen, da dies robuster gegenüber
Rauschen ist, was für reale Messungen unvermeidbar ist. Aus diesem Grund basiert un-
ser Algorithmus auf der Probabilistic Principal Component Analysis (PPCA). Die Para-
meter der Formbasen besitzen eine A-priori-Verteilung verteilt und werden mittels des
Expectation-Maximization (EM) Algorithmus iterativ gelernt oder marginalisiert. Dar-
über hinaus verbessern wir das probabilistische Modelle mit der Probabilistic Relational
Principal Component Analysis (PRPCA), die den Parametern relationale Bedeutung zwi-
schen den Frames gibt.

Wir behandeln auch das Problem, die richtigen Rotationsmatrizen der Objekte zu finden.
Dafür wird die Orthonormalitätsbedingung umfangreich untersucht. Anstatt Randbe-
dingungen für die numerische Optimierungen festzulegen, werden die internen geome-
trischen Eigenschaften der Rotationsmatizen berücksichtigt. Das konventionelle Newton-
Verfahren wird für die Riemannschen Rotationsmannigfaltigkeit erweitert, was letztend-
lich die Orthonormalitätsbedingung in eine freie Optimierung auf der Mannigfaltigkeit
auflöst.

Das System wird auf zwei realen Gesichtsdatenbanken evaluiert. Die Evaluationsergeb-
nisse zeigen, dass die PRPCA Erweiterung bessere Ergebnisse als der Baseline Algo-
rithmus erzielt, wenn ein allgemeines Gesichtsmodell für mehrere Personen konstruiert
wird. Außerdem übertrifft unsere Mannigfaltigkeit-basierte Optimierungstechnik in den
Experimenten die Performanz des state-of-the-art Ansatzes in fast allen Fällen. Die Ro-
bustheit im Umgang mit Rauschen zeigt die Leistungsfähigkeit im Umgang mit reellen
Bildaufnahmen.
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1. Introduction

The last decade has seen rapidly growing attention from the researchers in computer vi-
sion and pattern recognition communities on the reconstruction of 3D shape and motion
of objects over time—known as Non-Rigid Structure from Motion (NRSFM). The mo-
tivation therefor comes from the excellent ability of human being to model deformable
shapes, which are ubiquitous in the world surrounding us, on all levels from micro to
macro. And doubtless the recovery for face model is one of the most studied topics, which
relies on the promising results of the state-of-the-art face detection [YKA02], face recogni-
tion [ZCPR03] and face tracking [YJS06] systems for providing precise input point tracks
of faces. A wide range of different research fields, machine learning, computer graphics,
optimization, theoretical and numerical geometry, to mention a few, are applied to find
solutions.

While the simultaneous recovery of shape and motion for rigid objects using multi-view
[HZ04] or factorization [TK92] has been very well understood, most objects including
faces in the real-world do not only move rigidly (e.g. pose changes), they deform over
time (e.g. facial expressions) as well. A big problem in practice is noise since even the
state-of-the-art trackers can only provide inaccurate point tracks if placed in an uncon-
strained environment, which is one of the main focuses of this work.

In the rest of this chapter, the motivation and objectives will be detailed in Section 1.1,
which is followed by an outline of existed researches related to this work in Section 1.2.
Finally in Section 1.3 an overview of structure and content of this thesis will be described.

1.1 Motivation

Recovering scene geometry and camera motion from 2D monocular sequence of im-
ages, has achieved significant success for the 3D geometry of static objects. Colloquially,
Structure from Motion (SFM) is very similar to stereo vision that 3D structure is mod-
eled from images of the same object of which corresponding features are tracked. The
distinction lies in that for SFM, images are taken at different points of time, while for the
latter case, images are taken simultaneously, thus with the same 3D motion and struc-
ture. The widely used factorization method was first introduced by Tomasi and Kanade
[TK92]. Orthonormality constraints are adopted on the rotation matrices in order to re-
cover structure and motion in a single step. Unfortunately, faces, like most biological
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2 1. Introduction

objects and natural scenes, are flexible. 3D rigid motions, i.e. camera rotation and trans-
lation, along with non-rigid deformations, stretching and bending etc., are mixed alto-
gether in their image measurement. Hence it turns out to be a challenging and tricky task
to extend the existing rigid algorithms to the non-rigid scenario.

It is known that the problem of NRSFM is inherently underconstrained and thus in-
tractable if each point of the object moves arbitrarily. In practice, however, many ob-
jects, e.g. faces do deform under certain rules. A possible approach [BV99] is to learn
an application-specific 3D model of non-rigid structure from the training data to con-
strain deformation. Another possibility from Ullman [Ull83] is to hard-code and learn
a model incrementally. Some approaches [Bra01, TYAB01] were proposed from another
perspective to remove the need of such a prior model, which is not applicable in most
real-world situations. The shape model, i.e. shape bases, is treated as unknowns to be
solved, with only the orthonormality constraints on camera rotations being utilized. Xiao
et al. [XCK06] proved that due to lack of further constraints their method would lead to
ambiguous and not optimal solutions and introduced the basis constraints.

Most of the state-of-the-art NRSFM algorithms make use of a linear subspace model to
represent the shape model as a weighted combination of shape bases. In general, this
model is expected to be sensitive to the manual choice of the number of bases. Addition-
ally, Xiao and Kanade [XK04] pointed out that in case the bases are not of full rank three,
it would also suffer from degeneracies. Thus, improvement over the existing NRSFM
algorithm free of those issues is a main focus of this work, while ideally keeping robust
to noise.

1.2 Previous Work

In this section we give a review on researches done in the past that are considered to
be most relevant to our work. Algorithms for the feature extraction step e.g. face detec-
tion and tracking are outside the scope of this work. Instead we mainly concentrates on
algorithms for rigid and non-rigid SFM.

1.2.1 Structure from Motion

In computer vision and the study of visual perception, Structure from Motion refers to the
process of recovering the three-dimensional structure of an object by analyzing the rigid
motion over a time span. Modern SFM algorithms employ the factorization method for
orthographic camera projection proposed by Tomasi and Kanade [TK92]. Factorization
attempts to retain the geometric invariants through the temporal window. The observa-
tion data is stacked into a matrix consisting of (x, y) points for the feature tracks. The
rank theorem ensures that this input matrix can be factorized into two matrices, one cor-
responding to the camera motion, and the other representing the shape. Although the
resulting matrices from Singular Value Decomposition (SVD) are not unique, they only
differ by a linear transformation. By imposing metric constraints, the SFM problem for
rigid objects is solved. And later, this approach was extended to various camera projec-
tion models.

Poelman and Kanade [PK93] studied how the orthographic SFM could be applied to the
para-perspective projection, which closely approximates perspective projection while re-
taining linear algebraic properties. They also showed that the initial rank theorem for
the orthographic case was also valid for their scenario and gave a solution with differ-
ent orthonormality constraints and motion recovery techniques. Triggs [Tri96] further

2



1.2. Previous Work 3

extended the camera model to full perspective. If there is more than one object moving
in the image stream, Costeira and Kanade [CK98] presented a new method to separate
them and recover independently. No prior knowledge of the number of objects included
is needed because with the introduction of the new mathematical construct called shape
interaction matrix, computation of each shape is not explicitly done. Han and Kanade
[HK01] also solved the recovery of multiple objects for uncalibrated views. Yan and Pol-
lyfeys [YP05] regarded articulated bodies as a combination of a number of intersecting
rigid motion subspaces. They analyzed the rank constraint of two linked parts of an ob-
ject and handled axes and joints separately. A novel but simple approach on the basis of
subspace clustering was proposed.

1.2.2 Non-Rigid Structure from Motion

In the seminal work of Bregler et al. [BHB00] and Torresani et al. [TYAB01] for solving
NRSFM in the early 2000s, they assumed that the 3D shape of an object can be explained
as a linear combination of deformation shapes applied to a dominant rigid component.
In this way the non-rigid scenario is formulated as a factorization problem and the low
rank of the image measurements is analyzed. The advantage of the low rank linear shape
model lies in that it does not prescribe any particular type of 3D shape or deformation.
Because in general, this model requires that the number of basis shapes should be known,
an inaccurate choice can lead to performance fall. Theoretically, if the number is under-
estimated, it is not sufficient to represent all variations of the object; otherwise the extra
degree of freedom is unconstrained and is unlikely to generalize well, which will end up
fitting noise.

Using the linear representation Xiao et al. [XCK06] proposed a closed-form scheme for
solving the NRSFM problem. They proved that in the previous work imposing orthonor-
mality constraints alone on camera rotations is only sufficient when deformations at con-
stant velocities. In other cases the increased degree of freedom will cause the solution
ambiguous and even invalid since any linear transformation of the shape bases gener-
ates a new set of eligible bases. The additional basis constraints will determine the shape
bases uniquely. In [XK04], Xiao and Kanade pointed out that even enforcing both sets of
linear constraints above could still lead to ambiguity, if there exist bases not of full rank
three. Figure 1.1 illustrates a simple example of those degenerate deformations, which oc-
cur quite frequently in the real-world. Workaround with a further positive semi-definite
constraint eliminates the ambiguity raised by rank two deformation bases. Although
recently Akhter et al. [ASK09] argued that orthonormality constraints are in fact valid
enough and the primary challenge in NRSFM is due to the difficulty in the optimization
problem rather than the ambiguity in orthonormality constraints, the assertion by Xiao et
al. is still widely accepted as conventional heuristics for closed-form approaches.

Some drawbacks in the prior work, e.g. error-prone with the amount of noise added,
and inability to handle missing data tracks, are addressed initially by Torresani et al. in
[THB04] and further refined and extended to weak perspective camera model in [THB08].
In their work, 3D shapes are drawn from non-uniform Probability Distribution Func-
tion (PDF) with a Gaussian prior on each shape in the subspace instead of the common
linear subspace model, which is a specific usage of Probabilistic Principal Component
Analysis (PPCA). The parameters of the PDF are unknown in advance, which will be
optimized using a novel Expectation-Maximization (EM) algorithm together with the 3D
shapes and rigid motions. In other words, the PPCA model is employed as a hierarchical
Bayesian prior for the learning process. By marginalizing out deformation coefficients in

3
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Figure 1: (Left): Three points (red) simultaneously move
along fixed directions in the 3D space. Their trajectories
form a deformation basis of rank 3. (Middle): Two points
move along fixed directions within a 2D plane. Their trajec-
tories form a rank-2 shape basis. (Right): One point move
along a fixed direction. Its trajectory forms a rank-1 basis.

approaches have been proposed for different applications
[12, 10, 18]. Our discussion will focus on the factorization
methods that are closely related to our work.

The factorization method was first proposed by Tomasi
and Kanade [12]. First it applies the rank constraint to fac-
torize a set of feature locations tracked across the entire se-
quence. Then it uses the orthonormality constraints on the
camera rotations to reconstruct the shape and motion in one
step. This approach and its extensions to various camera
projection models [9, 14] work for static scenes.

Costeira and Kanade [6] proposed a method that factor-
izes the image measurement to segment multiple indepen-
dently moving objects and individually recover their shapes.
Wolf and Shashua [16] derived a geometrical constraint,
called the segmentation matrix, to reconstruct a scene con-
taining two independently moving objects from two per-
spective views. Vidal and his colleagues [15] generalized
this approach to the case of multiple independently mov-
ing objects. For reconstruction of scenes consisting of both
static objects and objects moving along fixed directions,
Han and Kanade [7] proposed a factorization method that
achieves a unique solution assuming constant velocities. A
more generalized solution to reconstructing the shapes that
deform at constant velocity is presented in [17].

Bregler and his colleagues [5] first introduced the ba-
sis representation of non-rigid shapes to embed the defor-
mation constraints into the scene structure. By analyzing
the low rank of the image measurements, they enforce the
orthonormality constraints on camera rotations to factorize
the non-rigid shape and motion. This method was extended
to the nonlinear optimization approaches in [13, 4]. These
three methods impose only the constraints on rotations. In
[18], we proved that enforcing only the rotation constraints
leads to ambiguous and invalid solutions. We then intro-
duced the uniqueness constraints on the shape bases and
proved that imposing both the basis and the rotation con-
straints results in a linear closed-form solution, assuming
the shape deformations are non-degenerate [18]. To recon-
struct the degenerate deformations, most of previous ap-
proaches [1, 7, 17] assume strong prior knowledge on either
shape or motion. The methods in [7, 17] require that the de-

formation velocity is constant. The method in [1] assumes
that the trajectory of each 3D point is either a straight line
or a conic and the camera projection matrices are all given.

3. Problem Statement
Given 2D locations of P feature points across F frames,
{(u, v)

T
fp|f = 1, ..., F, p = 1, ..., P}, our goal is to re-

cover the motion of the non-rigid object relative to the
camera, including rotations {Rf |f = 1, ..., F} and trans-
lations {tf |f = 1, ..., F}, and its 3D deforming shapes
{(x, y, z)

T
fp|f = 1, ..., F, p = 1, ..., P}, under the assump-

tion of weak-perspective projection model.
We follow the representation of [3, 5]. The non-rigid

shape is represented as linear combination of K shape bases
{Bi, i = 1, ...,K}. The bases are 3×P matrices controlling
the deformation of P points. Then the 3D coordinate of the
point p at the frame f is,

Xfp = (x, y, z)T
fp = ΣK

i=1cfibip (1)

where bip is the pth column of Bi and cif is its combination
coefficient at the frame f . The image coordinate of Xfp

under the weak perspective projection model is,

xfp = (u, v)T
fp = sf (Rf · Xfp + tf ) (2)

where Rf stands for the first two rows of the fth camera
rotation and tf = (tfxtfy)T is its translation relative to the
world origin. sf is the nonzero scalar of the weak perspec-
tive projection.

Replacing Xfp using Eq. (1) and absorbing sf into cfi

and tf , we have

xfp =
(

cf1Rf ... cfKRf

)
·
(

b1p

...
bKp

)
+ tf (3)

Suppose the image coordinates of all P feature points
across F frames are obtained. We form a 2F × P measure-
ment matrix W by stacking all image coordinates. Then
W = MB + T (11...1). where M is a 2F × 3K scaled
rotation matrix, B is a 3K × P bases matrix, and T is a
2F × 1 translation vector,

M =




c11R1 ... c1KR1

...
...

...
cF1RF ... cFKRF




B =




b11 ... b1P

...
...

...
bK1 ... bKP


, T =




t1

...
tF




(4)

As in [7, 5], we position the world origin at the scene
center and compute the translation vector by averaging the
image projections of all points. We then subtract it from W

Figure 1.1: Left: Three points moving along directions in a 3D space forms a rank three
deformation basis. Middle: Two points moving along directions in a 2D plane
forms a rank two deformation basis. Right: One point moving along a direc-
tion forms a rank 1 deformation basis. [XK04]

the EM algorithm overfitting is avoided while the robustness against noise and missing
data of this statistical model is preserved. Another advantage of PPCA over the sim-
ple subspace model is that degeneracies of closed-form solutions do not occur so that
the ambiguity problem suggested by Xiao et al. [XK04] does not happen here. Since the
assumption of independent and identically distributed (iid) samples from a Gaussian
doesn’t represent the temporal smoothing nature of the deforming object given sequen-
tial input image stream, a more sophisticated Linear Dynamical System (LDS) model
is also set to replace the PPCA model and outperforms it in certain circumstances with
much noise and missing data. As the importance of initialization cannot be overlooked in
the iterative approach, the rigid motion and mean shape component are obtained by the
Tomasi-Kanade algorithm [TK92]. The other shapes are fitted onto the remaining resid-
ual consecutively and the process is iterated. A comprehensive performance evaluation
of some state-of-the-art NRSFM algorithms in this work reveals better results achieved
with most synthetic and real-world datasets.

Recently more promising research on NRSFM is also done using various forms of linear
and non-linear optimization techniques to minimize the 3D reprojection error. In order to
overcome the degeneracy problem some additional heuristic constraints are introduced.
In fact, the subspace spanned by the camera motion is a subset of a smooth manifold due
to the orthogonality properties of rotation matrices. Shaji and Chandran [SC08] proposed
a canonical Riemannian metric in place of the functionally and computationally conve-
nient Euclidean metric. The span subspace of the rotation matrices and articulated shape
weights can be seen as rotation group SO(3) manifold and RK manifold respectively,
where K stands for the number of morph shapes. A main contribution of this work is the
generalization of the Newton algorithm to the Riemannian case. The optimization is then
performed on the tangent vectors in each tangent space along the geodesic of the prod-
uct manifold. Because the convergence speed of the Hessian is quadratic, the desired
solution is obtained within the first few iterations. Furthermore, the Wiberg algorithm
[OD07] is employed to solve the shape update.

A novel approach was presented by Rabaud and Belongie [RB09]. Other than recover-
ing the whole 3D shapes and motion parameters in almost all the existing applications,
this approach only focuses on an embedding of the possible ones within the input image
sequence. The intuition is: given enough image frames, a non-rigid deformed 3D shape
can be observed several times in different view angles. If some of the frames share a
low 3D reconstruction error, they are highly likely to represent a similar 3D shape, other-
wise it means a poorly matched set of frames. Following this principle, triplets of frames
are compared for an exploit of all repetitions in possible shape deformations. Then the

4
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generalized non-metric multi-dimensional scaling framework [AWC+07] is used to esti-
mate the weight of each deformation shape. The shape and motion are obtained by the
Kronecker Constraints and rotation constraints thereafter. The last but not least, bundle
adjustment is employed as a further optimization step, which minimizes the reprojection
error. This closed-form approach can reach 0% of error in a clean synthetic dataset, how-
ever with the amount of noise added the performance may drop faster than statistical
methods like PPCA.

Taylor et al. [TJK10] treated non-rigid 3D objects as “soup” of plausibly near rigid 3D
triplets. The idea comes from the fact that even complex non-rigid motions can be decom-
posed into local rigid transformation groups made of few points. The algorithm starts
with a traversal pairwise computation of distances in each triangle because the length of
edges on a 3D triangle is computationally more efficient than pose. Only nearby features
belonging to a triangle in the 2D Delaunay triangulation are considered rigid to reduce
complexity. Then poses and coordinates of the triangles are independently recovered as
rigid SFM using non-linear optimization. Finally the depths and flips of the triangles in
each view are refined. This approach of locally rigidity does not suffer from degeneracy
compared to other global approaches and comparable results are provided, too.

1.3 Thesis Overview

The major goal of this work is to learn 3D deformation shape model from 2D input image
frames of human faces. Since the internal and external noise of the image tracks are
inevitable, a more robust algorithm in those extreme conditions is desired.

Regarding to such problems, we address the geometric properties of the orthonormality
constraints and generalize the Newton’s optimization method to the underlying mani-
fold of the camera rotation matrices. That means, non-linear optimization can be carried
out on the manifold without doing any imprecise approximations. Moreover, we employ
a probabilistic framework to model the NRSFM factorization, as it is more robust to noise
than the closed-form factorization techniques. An advanced model with relational shape
information is also given. Experimental results on the Vicon and the BU-3DFE datasets
confirm that the manifold optimization approach outperforms the state-of-the-art algo-
rithm under noisy conditions. The relational information also helps while estimating
generic shape models using images of different subjects.

In the remainder of this thesis, the theoretical and functional principles of the whole sys-
tem are discussed in detail. The basic ideas and theories needed for the core algorithms
are described in Chapter 2. Then we explain our NRSFM and manifold-based estimation
techniques in Chapter 3. Experiments are intensively conducted in Chapter 4, and the re-
sults against the state-of-the-art algorithms and their explanations are also demonstrated.
In the end conclusions and directions of future research are drawn in Chapter 5.

5





2. Basic Principles

This chapter describes the theoretical fundamentals and core principles that our system
is based on. The first section covers the Expectation-Maximization algorithm, which it-
eratively solves our optimization problem. Then Principal Component Analysis and its
probabilistic variants that are studied extensively in this work are discussed. In the last
section geometric techniques of optimization on manifolds are introduced.

2.1 Expectation-Maximization Algorithm

In this section, the Expectation-Maximization algorithm as well as the Maximum Like-
lihood Estimation are described, which operate together as the statistical framework of
this work.

2.1.1 Maximum Likelihood Estimation

The Maximum Likelihood Estimation (MLE) is one of the most widely used parametric
methods for fitting statistical models and estimating their parameters. It gains its popu-
larity mainly from the good convergence properties with an increased number of training
samples and its simplicity compared to other methods [DHS01].

Suppose that a set of samples D contains N independent and identically distributed (iid)
samples x1, . . . ,xN , with the assumption of statistical independence we have

p(D|θ) ≡ p(x1, . . . ,xN |θ) =
N∏

k=1

p(xk|θ),

where the unknown parameter vector θ = (θ1, . . . , θp)
> is seen as variable in this function,

which is also known as the likelihood function of θ with respect to D. The goal of the
MLE is to find the estimator θ̂ that maximizes the likelihood function p(D|θ). Due to the
monotonicity of the logarithm function, it is analytically easier to define the logarithm of
the likelihood function, i.e. the log-likelihood as

L(θ) ≡ ln p(D|θ) =

N∑

k=1

ln p(xk|θ).

7



8 2. Basic Principles

Thus the maximum likelihood estimator can be found out as

θ̂ = arg max
θ

L(θ).

If the likelihood function p(D|θ) is well behaved and differentiable, and∇θ is the gradient
operator

∇θ =




∂
∂θ1
...
∂
∂θp


 ,

finally θ̂ can be obtained using standard differential calculus by taking the partial deriva-
tive with respect to θ and setting the set of p equations to zero

∇θL =
N∑

k=1

∇θ ln p(xk|θ) =




∂L
∂θ1
...
∂L
∂θp


 = 0.

The MLE owns some important properties [TK08]. First it is asymptotically unbiased,
which means the estimate converges in the mean to the true value of the unknown pa-
rameter. And it is asymptotically consistent, i.e. the mean square of the estimates tends to
zero, which provides high confidence in the result. The Cramér–Rao bound of the lowest
possible value of variance is satisfied too and thus it is also asymptotically efficient.

However, note that those desirable properties of MLE are valid only for large values of n
and if the data is incomplete, it would be difficult to get explicit solution for the problem.

2.1.2 Expectation-Maximization

In the last section we already know that in case of incomplete sample data the MLE is
not suitable for solving the problem. For those situations, the Expectation-Maximization
(EM) algorithm is a proper maximum likelihood technique for probabilistic models with
missing features, called latent variables. The algorithm was initially named and ex-
plained by Dempster et al. in [DLR77] and their basic idea is to iteratively estimate the
likelihood with the data that is present.

Considering a full sample D from a probabilistic model consisting of observed data X

and hidden data Z where D = X ∪ Z, along with a vector of unknown parameters θ, the
likelihood is maximized via

p(X|θ) =
∑

Z

p(X,Z|θ).

Because here under the assumption that a straightforward optimization of p(X|θ) is ei-
ther impossible or difficult to be done, the likelihood function L(θ; X,Z) = p(X,Z|θ)

with full data is employed. However, the complete dataset {X,Z} is not available, only
the incomplete data X instead. As for the latent variables Z, values are solely possible to
be estimated by the posterior distribution p(Z|X,θ), which appears in the E-step (expec-
tation step) of the EM algorithm as a replacement of the latent variables. Subsequently,
in the M-step (maximization step), this expected value of log-likelihood function is max-
imized. This expectation is given by

Q(θ|θi) = EZ|X,θi [lnL(θ; X,Z)].

8



2.1. Expectation-Maximization Algorithm 9

Note that in the definition of Q(θ|θi), it is a function of θ with the old estimate θi being
fixed, which is the best estimate for the full distribution of the current iteration. Given
this parameter estimate, the unknown data Z can also be marginalized and described
by it. Next the parameter θi with the maximum likelihood Q(θ|θi) is chosen as the new
value θi+1. The EM algorithm executes continuously until a certain convergence criterion
is reached. The complete algorithm is summarized in Algorithm 2.1.

Algorithm 2.1 Expectation-Maximization algorithm

1: Initialize θ0, i = 0.
2: repeat
3: E-step: compute Q(θ|θi).
4: M-step: θi+1 ← arg max

θ
Q(θ|θi).

5: i← i+ 1.
6: until Convergence.
7: return θ̂ ← θi.

Like many other iterative methods, the initial parameter values have a significant impact
on the speed of the convergence of the EM procedure and on the quality of the final esti-
mates. Furthermore, the algorithm also suffers from the local maximum problem for mul-
timodal distributions. Originally the algorithm was designed to find the MLE, but with
proper modification it is also capable of solving Maximum A Posteriori (MAP) problems,
which differs from the MLE in that prior knowledge of the parameter in the form of a
priori probability is taken into consideration, too. In this case, the posterior in the M-step
becomes QMAP(θ|θi) = QMLE(θ|θi) + ln p(θ), where a priori term ln p(θ) is added.

A key property of the EM algorithm is that it guarantees the monotone increase of the
log-likelihood of the known data X, while the unobserved data Z is marginalized. To
illustrate this, the log-likelihood function can also be rewritten into the following decom-
position

ln p(X|θ) = L(q,θ) + KL(q||p), (2.1)

if q(Z) is a distribution over the latent variables and

L(q,θ) =
∑

Z

q(Z) ln
p(X,Z|θ)

q(Z)
,

KL(q||p) = −
∑

Z

q(Z) ln
p(Z|X,θ)

q(Z)
,

where L(q,θ) is both a functional of q(Z) and a function of θ.

The EM algorithm is an iterative method to optimize maximum likelihood problems. The
alternative description makes it possible to prove that the log-likelihood is indeed max-
imized. The property of the Kullback-Leibler divergence guarantees KL(q||p) is always
non-negative, hence from Equation (2.1) we know that L(q,θ) ≤ ln p(X|θ) is satisfied.
Equality is valid if and only if q(Z) = p(Z|X,θ). This initial state of the EM algorithm is
illustrated in Figure 2.1a.

If the current parameter value is denoted as θold, which is kept fixed in the E-step, the
lower bound L(q,θold) is maximized if a proper distribution q(Z) is found. This is based
on the observation that the log-likelihood ln p(X|θold) has no dependent relation with

9



10 2. Basic Principles

ln p(X|θ)L(q, θ)

KL(q||p)

(a)

ln p(X|θold)L(q, θold)

KL(q||p) = 0

(b)

ln p(X|θnew)L(q, θnew)

KL(q||p)

(c)

Figure 2.1: Illustraion of the EM algorithm in an alternative description. (a) shows the
initial state of the EM decomposition, where the KL divergence KL(q||p) > 0

and L(q,θ) sets the lower bound on the log-likelihood function ln p(X|θ). (b)
reveals the E-step of the EM algorithm. Maximization of q(Z) and the fixed
parameter θold make the lower bound approach the log-likelihood function
while the KL divergence vanishing. (c) illustrates the M-step of the EM algo-
rithm. MaximizingL(q,θ) and fixing q(Z) cause both the lower bound and the
log-likelihood to go up. Because the KL divergence is not zero any more, the
log-likelihood moves higher and so forth with the next EM iteration. [Bis07]

q(Z) so when the Kullback-Leibler divergence vanishes, i.e. q(Z) = p(Z|X,θold), the
lower bound will equal the log-likelihood, as shown in Figure 2.1b.

In the following M-step, the distribution q(Z) is kept unmodified instead and the old
parameter vector θold is updated to θnew. Maximization of the lower bound L(q,θ) will
result in the increase of the log-likelihood function ln p(X|θ) as well. Because q(Z) stays
fixed, it will no more equal the posterior distribution p(Z|X,θnew) and the equality con-
dition of the corresponding Kullback-Leibler divergence is not satisfied, either. Thus
KL(q||p) is nonzero and there is a greater increase in the log-likelihood function than
in the lower bound, as illustrated in Figure 2.1c.

Although the EM algorithm brilliantly breaks the barrier of solving some difficult MLE
problems, some others still remain intractable in E-step, M-step, or even both steps. In
these cases the Generalized EM algorithm is born with a bit more lax requirement than
the normal one. It demands only a better θi+1 in the M-step, not necessarily the optimal
value. According to the alternative representation in Equation (2.1), an improved lower
bound L(q,θ) with respect to θ ensures the increase of the log-likelihood anyway, as
seen in Figure 2.1c, unless the parameters have already reached a maximum value. It is
natural that convergence of the Generalized EM algorithm will drop, but with the greater
freedom it offers, much more straightforward step can be employed. And similarly, the
partial update technique can also be applied to the E-step.

2.2 Probabilistic Principal Component Analysis

Principal Component Analysis is a well-established mathematical tool for data analy-
sis and processing, which is covered in the first part of this section. In this section, we
demonstrate how it arises as MLE solutions in a latent variable model to get over the
absence of an associated probabilistic scheme in the original approach.

10



2.2. Probabilistic Principal Component Analysis 11

2.2.1 Principal Component Analysis

Principal Component Analysis (PCA), also known as the Karhunen–Loève transform,
was invented by Pearson in [Pea01] and is nowadays extensively used in feature gen-
eration, dimensionality reduction and multivariate analysis. It has been employed for
learning linear subspace models in almost all kinds of applications in computer vision,
e.g. for recognition, tracking and reconstruction [CT01, SK87, TP91]. PCA is actually an
orthogonal linear transformation that projects the data onto new coordinate axes accord-
ing to the variance in descending order [Jol02]. After the projection, the variance of the
projected data on the lower dimensional principal subspace is maximized and mutually
uncorrelated [Hot33].

Let {tn} be a set ofD-dimensional input observations where n ∈ {1, . . . , N}, the objective
of the PCA is to find a lowerQ-dimensional projection subspace with maximum variance.
Let W = {w1, . . . ,wQ} be a projection matrix and the projected data

xn = W>(tn − t̄),

given t̄ is the sample mean. By generating mutually uncorrelated feature vectors, PCA
also appears to have some other important properties, e.g. minimum mean squared pro-
jection error. To prove this, assume that we have a set of D-dimensional orthonormal
basis vectors {wi}, where i ∈ {1, . . . , D}. Due to the orthonormality property, the prod-
uct of these vectors satisfies the Kronecker delta

δij = w>i wj . (2.2)

Then each feature vector can be represented as a linear transformation of the given basis
vectors by

tn =
D∑

i=1

αniwi, (2.3)

where the linear transformation can be obtained with the help of Equation (2.2) as

αni = t>nwi.

Hence Equation (2.3) can be rewritten into the form

tn =

D∑

i=1

(
t>nwi

)
wi. (2.4)

As we know that PCA projects the original data onto a lower dimensional space and re-
duces the dimensionality to Q < D, we can correspondingly separate the representation
above to the sum of the first Q basis vectors and the rest as

t̃n =

Q∑

i=1

zniwi +

D∑

i=Q+1

biwi.

Our goal is to choose proper {wi}, {zni} and bi to minimize the mean squared error
between the original data tn and the approximation t̃n

J =
1

N

N∑

n=1

||tn − t̃n||2. (2.5)

11



12 2. Basic Principles

By minimizing with respect to {zni} and {bi} successively, it gives

zni = t>nwi,

bi = t̄>wi.

Again with the help of the substitution similar in Equation (2.4), we have

tn − t̃n =
D∑

i=Q+1

{
(tn − t̄)>wi

}
wi.

Therefore the error measure J defined in Equation (2.5) can be further expanded as a
function of wi as

J =
1

N

N∑

n=1

D∑

i=Q+1

(
x>nwi − x̄>nwi

)2
=

D∑

i=Q+1

w>i Swi.

If J is minimized directly, degenerate solution of wi = 0 will occur. This can be avoided
by applying a Lagrange multiplier λi to the additional term w>i wi = 1, which reveals

J̃ = w>i Swi + λi(1−w>i wi).

The minimum error measure can be obtained by setting the derivative with respect to wi

to zero, which corresponds to

Swi = λiwi,

where i ∈ {1, . . . , D}. Then, the mean squared error is denoted by the sum of the eigen-
values of the remaining eigenvectors vertical to the projection subspace

J =
D∑

i=Q+1

λi.

Hence the error measure is purely relevant to the selection of the eigenvalues. In other
words, PCA projects the original data tn onto the principal subspace spanned by the Q
greatest eigenvalues, and minimizes the related reprojection error to the D − Q smallest
eigenvalues.

In Figure 2.2, the two principal axes are found provied the two-dimensional dataset
where the variance of the projected data points reaches the maximum. When used as
a dimensionality reduction technique, the multivariate samples in Figure 2.2 can be pro-
jected onto the first principal axis w1 with the largest variance, whereas the second prin-
cipal axis w2 is discarded. Note that although the mentioned properties provide an ex-
cellent tool to select a reduced number of the most dominant and uncorrelated features
out of the original data, consideration on the best class separability is not taken. Such
case is outside the scope of this thesis and the reader is referred to Linear Discriminant
Analysis (LDA) [MK01] for details.

2.2.2 Probabilistic Principal Component Analysis

The PCA has achieved a lot of successes in many fields of applications. However, a no-
table drawback of it is the lack of an associated probabilistic model for the observed data.
In fact, Tipping and Bishop [TB99] and Roweis [Row98] have both given a probabilis-
tic formulation of PCA, known as Probabilistic Principal Component Analysis (PPCA),
which brings several appealing advantages over the conventional PCA:

12



2.2. Probabilistic Principal Component Analysis 13

x1

x2

x̄

w1w2

Figure 2.2: PCA seeks to project data onto a principal subspace of lower dimensionality,
where the variance of the projected data maximizes.

• PPCA links PCA to a probabilistic representation and shows a constrained form
of the Gaussian distribution by limiting the number of free parameters while still
allowing to model the dominant correlations in the dataset.

• An efficient EM algorithm can be derived for solving PPCA iteratively, without
the cost of computing the data covariance matrix, especially for large-scale applica-
tions.

• PPCA is capable of handling missing data when using the EM algorithm.

• It is more easily to generalize the single model to the mixture model case.

• The introduction of the likelihood function makes possible to fit into other proba-
bilistic density models.

PPCA has a simple linear probabilistic assumption that all marginal and conditional dis-
tributions are Gaussian. The formulation of PPCA is closely related to factor analysis
[Bar87, Bas94], in which a statistical model is used to describe the relation between a D-
dimensional observed vector T and the correspondingQ-dimensional latent variables X.
With a D × Q projection matrix W, a mean vector µ and an additive isotropic Gaussian
noise term ε being defined, the formal definition is given by

T = WX + µ+ ε,

where the following distributions over the latent variables X and the Gaussian noise
process ε are assumed

X ∼ N (0, I), (2.6)

ε ∼ N (0, σ2I).

Based on the properties of the Gaussian distribution, the conditional distribution of T

given X is

T|X ∼ N (WX + µ, σ2I).

Using the Bayes’ rule, by integrating out the latent variables X, the marginal distribution
of T can be obtained

T ∼ N (µ,WW> + σ2I),

13
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x

p(x)

x̂

t2

t1

w

µ
x̂|w|

p(t|x̂)

t2

t1

µ

p(t)

Figure 2.3: An illustration of the PPCA process with a two-dimensional data space and
a one-dimensional latent space. A value of the latent variables x̂ is drawn
from the prior distribution p(x). Given this value, t is drawn from a isotropic
Gaussian distribution with mean wx̂+µ and covariance σ2I, which is shown
by the red circles. The marginal distribution p(t) is illustrated by the green
ellipses. [Bis07]

where the covariance model is later on replaced by C = WW> + σ2I for simplicity
reason. Then the log-likelihood of the observation dataset T = {tn} is

LML = ln p(T|µ,W, σ2)

=

N∑

n=1

ln p(xn|µ,W, σ2)

= −N
2

(
D ln(2π) + ln |C|+ tr(C−1S)

)
,

(2.7)

where

S =
1

N

N∑

n=1

(tn − µ)(tn − µ)>. (2.8)

Figure 2.3 illustrates how PPCA maps an one-dimensional latent space onto a two-dimensional
data space given the prior distribution of the latent variables. The conditional isotropic
Gaussian distribution and the marginal distribution of the samples are shown by the red
circles and the green ellipses respectively.

The model parameters can be determined using different methods. First, MLE can be
employed to estimate W and σ2 in closed form by maximization of LML respectively

WML = UQ(ΛQ − σ2I)
1
2 R, (2.9)

where the Q columns in the D × Q matrix UQ are the principal eigenvectors of S. Their
counterpart eigenvalues λ1, . . . , λQ form theQ×Q diagonal matrix ΛQ. Note that R is an
arbitrary Q×Q orthogonal matrix, which, in practice, can be effectively ignored. Similar
to the conventional PCA case, the global maximum is only possible when the greatest Q
eigenvalues are in matrix ΛQ. In this case, if these eigenvectors are so organized that their
eivenvalues are in descending order, W will exactly span the principal subspace of the
standard PCA. When setting W = WML, the MLE of the noise variance σ2 is obtained by

σ2ML =
1

D −Q
D∑

i=Q+1

λi, (2.10)

14



2.2. Probabilistic Principal Component Analysis 15

which has a natural interpretation associated with the discarded information in the extra
dimensions.

With a huge size of dataset or an extreme high dimensionality, the closed-form method
provided by the MLE is no longer suitable. Furthermore, in case of the factor analysis
model without closed-form solution, or in the presence of missing data, the EM algorithm
can be employed to handle these situations. The general process of the EM algorithm
described in Section 2.1.2 can be applied here. In PPCA the observation data T is modeled
over a continuous Gaussian latent space X. In the EM approach for maximizing the
likelihood estimates of the model parameters, the “missing” latent variables X together
with the “good” data samples T are put together as the complete data. Because of the
assumption of independent data, the log-likelihood takes the form

LEM = ln p(T,X|µ,W, σ2) =
N∑

n=1

{ln p(tn|xn) + ln p(xn)} .

In the E-step, taking the expectation with respect to this posterior distribution using the
“old” parameter values gives

E[LEM] = −
N∑

n=1

{
D

2
ln(2πσ2) +

1

2
tr
(
E[xnx

>
n ]
)

+
1

2σ2
||tn − µ||2

− 1

σ2
E[xn]>W>(tn − µ) +

1

2σ2
tr
(
E[xnx

>
n ]W>W

)}
.

Note that the expectation is done with respect to the distribution p(X|T,W, σ2) and terms
independent of the model parameters are ignored. Then the following evaluations are
made

E[xn] = M−1W>(tn − t̄), (2.11)

E[xnx
>
n ] = cov[xn] = σ2M−1 + E[xn]E[xn]>, (2.12)

in which M is defined as

M = W>W + σ2I.

In the M-step, by keeping the posterior statistics fixed, LEM is maximized with respect to
W and σ2 yields the “new” parameters

Wnew =

[
N∑

n=1

(tn − t̄)E[xn]>

][
N∑

n=1

E[xnx
>
n ]

]−1

= SW(σ2I + M−1W>SW)−1,

(2.13)

σ2new =
1

ND

N∑

n=1

{
||tn − t̄||2 − 2E[xn]>W>

new(tn − t̄)

+ tr
(
E[xnx

>
n ]W>

newWnew

)}

=
1

D
tr(S− SWM−1W>

new).

(2.14)

After initialization, the EM algorithm for PPCA alternates between E-step, which evalu-
ates the expectations over the latent space posterior using Equation (2.11) and Equation
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16 2. Basic Principles

(2.12), and M-step, which revises the parameter values in Equation (2.13) and Equation
(2.14). These two steps are repeated until certain convergence criteria are satisfied. Ac-
tually these four equations can further be merged so that the appearances of E[xn] and
E[xnx

>
n ] are replaced by the estimates in the E-step, which gives

Wnew = SW(σ2I + M−1W>SW)−1,

σ2new =
1

D
tr
(
S− SWM−1W>

new

)
,

where S is the covariance matrix in Equation (2.8).

2.2.3 Probabilistic Relational Principal Component Analysis

Based on the probabilistic formulation of PCA in Section 2.2.2, a lot of appealing fea-
tures are made possible with the introduction of the Gaussian latent variables. Both
PCA and PPCA are only valid on the assumption that the data samples are indepen-
dent and identically distributed. It is true that for certain cases this assumption suffices,
for many real-world applications, though, it is usually unreasonable for relational data
and some intrinsic links between the data are already lost in this modeling phase [GT07].
For example, if research papers and their references are analyzed for classification in sub-
fields, it is rational to assert that papers belonging to the same category have more cross-
references between them, which can be modeled as additional knowledge of significant
importance. With the iid assumption, however, this information is discarded. For the
Non-Rigid Structure from Motion (NRSFM) problem, if we exploit the internal relations
within temporally nearby frames, they are more similar in comparison with the frames
with a large time interval between them. Li et al. [LYZ09] proposed an novel extension
of PPCA, called Probabilistic Relational Principal Component Analysis (PRPCA), for re-
lational data analysis.

Remember that in PPCA, the latent variable matrix X is denoted

X ∼ N (0,Φ),

where the covariance Φ is defined as the identity matrix I for iid variables in Equation
(2.6). Actually Φ reflects on the semantics within the data, so if it is substituted by a non-
identity matrix, the iid assumption is easily eliminated. Hence, one of the essential tasks
of PRPCA are to figure out a reasonable covariance matrix Φ that represents the measure
of relation between the latent variables so that if there exists a high relation between them,
it should be modeled as close as possible.

Suppose that the links between two instances are always positively correlated. Euclidean
distance can be employed to define the gap. With the observation that the larger the
retained variance of the latent variables X are, the lower the probability density at X

with respect to the prior is, the density function should be given a low value if the link
between the instances is close. Thus when a symmetric Q × Q matrix A is defined to
indicate the positive link, a decent relational matrix ∆ can be given as

∆ = γI + (I + A)>(I + A),

where γ is typically a very small value solely to keep the relation matrix ∆ to be positive.
Because commonly if there is a link from point i to j, the link in the inverse direction
from point j to i also stands. That says Aij = Aji. Thus due to the symmetric property
of matrix A, the relational matrix ∆ can be written as

∆ = γI + (I + A)(I + A) (2.15)
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Figure 2.4: Graphical models of PPCA in (a) and PRPCA in (b), in which the observa-
tion matrix T can be expressed as a directed graph associated with the latent
variable matrix X, while parameter values of µ, W and σ2 are learned.

as well. Hence if let the covariance matrix Φ be the inverse of the relational matrix ∆

Φ = ∆−1,

the prior for X is indeed set to a lower value if the relation values in A as well as in ∆

appear to be large. A detailed proof is out of the scope of this thesis, so it is not provided
here. The reader is referred to [LYZ09].

With an appropriate covariance matrix Φ = ∆−1 being given, the general PRPCA model
is defined as follows:

X ∼ N (0,Φ)

ε ∼ N (0, σ2I)

T = WX + µ+ ε

Further distributions very close to those in PPCA can be obtained

T|X ∼ N (WX + µ, σ2I), (2.16)

T ∼ N (µ,WW>Φ + σ2I). (2.17)

The graphical models of PPCA and PRPCA are illustrated in Figure 2.4a and Figure 2.4b.
The difference between both algorithms is quite small and both can be expressed as a
directed graph associated with the latent variable matrix X and the observation matrix
T, with only I being replaced by Φ. That again proves that the data here is correlated
compared to those independent samples in PPCA. Actually if the iid assumption applies,
i.e. A = 0, the covariance matrix Φ approximates the identity matrix I, thus PRPCA
degenerates to PPCA in this case, as we may derive from the equations above.

If the covariance matrix of the marginal distribution of the observation matrix T is de-
noted C = WW>+σ2I, the log-likelihood function is derived similar as in Equation (2.7)
for PPCA in the form of

LML = ln p(T|µ,W, σ2)

= −N
2

(
D ln(2π) + ln |C|+ tr(C−1H)

)
,

(2.18)

where terms irrelevant to the parameters are discarded and H is defined as

H =
1

N
(T− µ)∆(T− µ)>. (2.19)

17



18 2. Basic Principles

If we make a comparison of Equation (2.7) and Equation (2.18), the difference is only
between S and H as the relational matrix ∆ is in the place of the iid matrix I. Therefore,
the existing learning methods for PPCA may still be used with little modification. For
the closed-form solutions using MLE, it is even in the same form for the projection matrix
WML and the noise variance σ2ML, which are provided in Equation (2.9) and Equation
(2.10) respectively.

In the EM formulation, the observation data T and the latent variables X, seen as missing
data, are treated together as the complete dataset, whereas W and σ2 as parameters. The
complete log-likelihood is

LEM = ln p(T,X|µ,W, σ2) = ln p(T|X) + ln p(X).

With the help of the Bayes’ rule, the posterior distribution of the latent variables p(X|T)

can be derived from Equation (2.16) and Equation (2.17). In the E-step, the estimates of

E[X] = M−1W>(T− µ) (2.20)

E[X∆X>] = Nσ2M−1 + E[X]∆E[X]> (2.21)

are calculated, where

M = W>W + σ2I

and the expectation of the complete log-likelihood function is given as

E[LEM] = −ND
2

lnσ2 − 1

2σ2

{
tr
(

(T− µ)∆(T− µ)>
)

−2 tr
(

(T− µ)∆E[X]>W>
)

+ tr
(
W>WE[X∆X>]

)}
.

In the next M-step to maximize the complete log-likelihood, the parameters {W, σ2} are
updated to the new values

Wnew = (T− µ)∆E[X]>E[X∆X>]−1

= HW(σ2I + M−1W>HW)−1,

σ2new =
1

D
tr(H−HWM−1W>

new),

where S is defined in Equation (2.19).

2.3 Manifold Optimization

The optimization problem with constraints seeks to maximize or minimize a function,
while regular constraints terms are to be satisfied. The conventional approach for this
problem is to impose weighted cost to the constraints and solves the optimization prob-
lem of the sum of the objective function and the cost functions. Examples of such numeri-
cal optimization techniques are the Lagrange multiplier, or more generalized Karush–Kuhn–Tucker
conditions. However, the optimization community has long been aware of the fact that
linear and quadratic functions with some specific constraints, e.g. the orthonormality con-
straints, have special structure to exploit. In fact, Stiefel (or Grassmann) manifold have
also the geometric meaning representing these constraints. On the other hand, the New-
ton’s method has been widely used for hundreds of years as a nonlinear analysis tool to
find good approximations to the maximum or the minimum of functions. Hence in this
section, geometric insights of the underlying constraints for optimization have been ad-
dressed. At first, the Newton’s method on the Euclidean space and a brief introduction
to the manifold geometry are given. In the next part, a generalization of the Newton’s
method on the manifold is described.

18



2.3. Manifold Optimization 19

2.3.1 The Newton's Method

The Newton’s method, also known as the Newton–Raphson method, named after Isaac
Newton and Joseph Raphson, is originally a nonlinear technique to iteratively approxi-
mate the roots of the functions. Starting from an initial guess, the method calculates the
tangent line and moves the iteration point to its intercept of the x-axis, which is usually
a better approximation and can be used for the next iteration. The Newton’s method is
also an ideal approach to find the stationary points of differentiable functions.

Assuming that f(x) is a twice-differentiable function on Rn, a necessary (and sometimes
sufficient) condition for a minimum at point x∗ ∈ Rn is that

∇f(x∗) = 0.

If f(x) is continuously differentiable up to second order for every point x ∈ Rn, the
update sequence xn can be approximated by the Taylor series expansion up to the second
order, which yields

∇f(xk) +∇2f(xk)(x− xk) = 0.

Suppose that the Hessian ∇2f(xk) is non-degenerate, thus invertible, the previous equa-
tion can be solved with the answer xk+1 as

xk+1 = xk − ∇f(xk)

∇2f(xk)
. (2.22)

Provided a good initial point is given, the Newton’s method owns some outstanding
properties [Avr03]:

• Knowledge up to only second order of the function at the current point required.

• Locally quadratic rate of convergence to a local minimum in general.

• Convergence in a single iteration for quadratic functions.

The Newton’s method on the Euclidean space simply updates the current iteration point
by subtracting the gradient vector multiplied by the inverse of the Hessian. Only knowl-
edge of the first and second order derivatives are required in this case. In the remaining
part of this section, insights of its generalization on manifolds are given.

2.3.2 Geometric Foundation of Manifolds

Manifold is a topological space, which is locally Rn. That means, a small enough scale of
the manifold resembles the Euclidean space. And the dimension of that scale represents
the dimension of the manifold. The simplest manifold is the Euclidean space itself. Other
examples such as circle (one-dimensional) and sphere (two-dimensional) are also familiar
to us.

However, in most real-world applications some more specific kinds of manifolds with
calculus are required. For differentiable geometry, a smooth manifold is a differentiable
manifold if all orders of derivatives exist. Another example is that in order to measure
distances and angles of a differentiable manifold, a metric, or in inner product 〈·, ·〉must
be endowed for each tangent space. This is named as Riemannian manifold. Various no-
tions like volumes and curvature can be defined. For instance, the Euclidean space with
the Euclidean distance as its metric is the most general case of a Riemannian manifold.
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20 2. Basic Principles

x
∆
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TxM

Figure 2.5: Tangent space TxM at the point x on the standard 2D sphere S2. ∆x ∈ TxM
is a tangent vector passing through x.

In this thesis, the manifold of the three-dimensional special orthogonal group SO(3) is
extensively studied, which contains orthogonal matrices R>R = I with determinant 1,
so formally

SO(3) =
{

R ∈ R3×3 : R>R = I, det(R) = 1
}
. (2.23)

Actually it is a special instance of Stiefel manifold

Vk(Rn) =
{

A ∈ Rn×k : A>A = I
}
,

which generalizes to O(n) when k = n.

The tangent space at the point x on the differentiable manifold is the unique tangent
plane to the submanifold at that point. Informally it contains all tangent vectors that
pass through x. For example, Figure 2.5 illustrates the tangent space TxM at the point
x on the sphere S2, which is a two-dimensional manifold. Because the dimension of the
tangent space is the same as the dimension of the manifold, we observe that both the
tangent plane and the sphere are two-dimensional. ∆x is one of the tangent vectors that
constitute the tangent space. On the sphere it is perpendicular to the radii. If we make
a deeper understanding of the tangent vectors on the manifold of orthogonal groups,
e.g. Stiefel manifold, differentiating Y>Y = I reveals

Y>∆ + ∆>Y = 0, (2.24)

which leads to the verdict that Y>∆ is a skew-symmetric matrix, a matrix whose trans-
pose is its negative. In case of the rotation group SO(3), this can be investigated from
another perspective. Since it is a Lie subgroup as well as the general linear group GL(3)

[Lee03], the Lie algebra so(3) associated with SO(3) covers all skew-symmetric 3× 3 ma-
trices. Note that unlike the case on the Euclidean space, where vectors can be moved in
parallel straightforwardly by merely changing the base point of the arrow. But on the
embedded manifold, if we still move the tangent vector at the point Y(0) to a new loca-
tion Y(ε) in the same way, it usually does not guarantee that the vector is still a tangent
vector at Y(ε). By subtracting the component in the direction of the normal vector, the
direction of the new tangent vector is shown in Figure 2.6

Metric is the distance between two points on the space. On the space M, the metric
function is as follows:

g :M×M→ R

20
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Fig. 2.2. Parallel transport in a submanifold of Euclidean space (infinitesimal construction).

Figure 2.2 illustrates the following idea: Imagine moving a tangent vector ∆ along
the curve Y (t) in such a manner that every infinitesimal step consists of a parallel
displacement of ∆ in the Euclidean np-dimensional space, which is then followed by
the removal of the normal component. If we move from Y (0) = Y to Y (�) then to
first order, our new location is Y + �Ẏ . The equation for infinitesimally removing the
component generated in the normal space as we move in the direction Ẏ is obtained
by differentiating (2.3) as follows:

∆̇ = −Y (Ẏ T∆ + ∆T Ẏ )/2.(2.16)

We are unaware of any closed form solution to this system of differential equations
along geodesics.

By differentiation, we see that parallel transported vectors preserve the inner
product. In particular, the square length of ∆ (tr∆T∆) is preserved. Additionally,
inserting Ẏ into the parallel transport equation, one quickly sees that a geodesic
always parallel transports its own tangent vector. This condition may be taken as the
definition of a geodesic.

Observing that tr∆T∆ is the sum of the squares of the singular values of ∆,
we conjectured that the individual singular values of ∆ might also be preserved by
parallel transport. Numerical experiments show that this is not the case.

In the case of the orthogonal group (p = n), however, parallel translation of ∆
along the geodesic Q(t) = Q(0)eAt is straightforward. Let ∆(t) = Q(t)B(t) be the
solution of the parallel translation equation

∆̇ = −Q(Q̇T∆ + ∆T Q̇)/2,

where B(t) is a skew-symmetric matrix. Substituting ∆̇ = Q̇B + QḂ and Q̇ = QA,
we obtain

Ḃ = −1

2
[A, B],(2.17)

whose solution is B(t) = e−At/2B(0)eAt/2; therefore,

∆(t) = Q(0)eAt/2B(0)eAt/2.(2.18)

These formulas may be generalized to arbitrary connected Lie groups [47, Chap. 2,
Ex. A.6].

Figure 2.6: Parallel transport of a tangent vector at the point Y(0) to a new location Y(ε).
The direction of the new tangent vector can be obtained by removing the com-
ponent in the direction of the normal vector. [EAS99]

For x,y, z ∈M, a well-defined metric is required to be

• positive definite, which means g(x,y) ≥ 0 and the equality holds only when x = y,

• symmetry, i.e. g(x,y) = g(y,x), and

• triangle inequality with g(x, z) ≤ g(x,y) + g(y, z).

For Stiefel manifold, if the equality of all points on the manifold is taken into account, the
canonical metric is given by Edelman et al. [EAS99] varies in accordance with the location
Y in the form of

gc(∆,∆) = tr

(
∆>(I− 1

2
YY>)∆

)
.

In case of the rotation group SO(3) where k = n, the canonical metric is simply

gc(∆,∆) =
1

2
tr(∆>∆).

As we all know, the shortest path between two points on the Euclidean space is straight
line. On the manifold instead, the notion should be generalized to curved path, namely
the geodesic, which gets its name from the old science for measurement study of the
earth, geodesy. To start with, let’s consider the case on the sphere. If we keep the acceler-
ation constant, the acceleration vector is normal to the radius, and hence the path is the
great circle of the sphere. To calculate the geodesic, from the definition point of view, it is
the same to minimize the curve length at Y(t)

L =

∫ √
gc(Ẏ, Ẏ) d t.

After some steps of derivations [EAS99], the geodesic function for orthogonal group is
given by

Y(t) = Q exp(At), (2.25)

where Q is the starting point at t = 0 and A is a skew-symmetric matrix related to the
tangent vector.
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Figure 2.7: Comparison between nonlinear optimization schemes on the Euclidean space
and on the manifold.

2.3.3 Generalization of Newton's Method on Manifold

The Newton’s method for optimizing a function f(x) introduced in Section 2.3.1 is only
valid when x belongs to an open subset of the Euclidean space. If the variable is sub-
ject to some special constraints, e.g. the orthonormality constraints, many conventional
studies are unaware of the geometric meanings of the underlying manifold space and the
manifold is embedded as a submanifold into the Euclidean space Rn of a higher dimen-
sion and an impose additional constraints to approximate the maximum or minimum.
However, if carrying out the Newton steps on the proper manifold, the problem can be
eventually turned into an unconstrained solution. That is why the Newton’s method is
generalized on manifold [Man04]. Figure 2.7 illustrates a demonstrative example of the
similarity and disparities of the non linear optimization schemes on the Euclidean space
and on the manifold. In Figure 2.7a, the update steps are straight lines, while in Figure
2.7b, the updates must be done on the manifold along the geodesics.

Formulated in Equation (2.22), the Newton’s method updates the current location by
subtracting the gradient vector multiplied by the inverse of the Hessian. The calculation
of the gradient and the Hessian depends on the choice of the metric. The gradient on
the manifold is in fact a tangent vector, in which direction the objective function value in-
creases the fastest. Hence at point Y on the manifold, the gradient vector∇F for function
F (Y) is defined as

tr(F>Y∆) = gc(∇F,∆)

for an arbitrary tangent vector ∆, where FY is taken as the directional derivative of F
with respect to all components in Y. Alternatively, if Y(t) is seen as a moment on the
geodesic, the gradient as well as the Hessian may be written as follows:

∇F (∆) =
dF (Y(t))

d t

∣∣∣∣
t=0

(2.26)

HessF (∆,∆) =
d2 F (Y(t))

d t2

∣∣∣∣
t=0

(2.27)
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∆i

Yi Yi+1

Figure 2.8: Generalization of the Newton’s method on manifold. Current approximation
is updated in the direction of the optimal update vector ∆i ∈ TYiM by a
distance of

√
gc(∆i,∆i). Applying the update on the geodesic reveals the

new point Yi+1.

For the Newton’s method, assuming that the Hessian is invertible, the optimal update
vector is the tangent vector that satisfies ∆ = −Hess−1 G, or equivalently

HessF (∆,X) = gc(−G,X)

for all tangent vectors X, where G = ∇F as the gradient.

Now that we have accomplished all the required elements for the Newton’s method,
to be specific, the gradient, the Hessian and the update path on the geodesic. The whole
process remains unchanged mostly with only a few modifications, as shown in Figure 2.8.
In each iteration, an optimal update vector ∆i ∈ TYiM is computed using the canonical
metric at Yi. Then the current approximation is updated in this direction on the geodesic
by a distance of

√
gc(∆i,∆i) to Yi+1. The algorithm is summarized in Algorithm 2.2.

Algorithm 2.2 Newton’s method for optimization F (Y) on manifold
1: repeat
2: At the point Y, compute the optimal update vector ∆.

2(i). Compute the gradient G.

2(ii). Compute the Hessian Hess−1.

2(iii). Obtain ∆ = −Hess−1 G.

3: Move from Y in direction ∆ along the geodesic using Equation (2.25) by a distance
of
√
gc(∆i,∆i).

4: until Convergence.
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3. Methodology

Having given an introduction to the theoretical principles of this work, this chapter de-
scribes the design and implementation for the NRSFM task. First, we start with our
general NRSFM formulation. The model initialization technique is described next. In the
subsequent sections, the PPCA framework and its modification PRPCA are presented.
Last but not least, our generalization of the Newton’s method on the Riemannian mani-
fold for the camera rotation update is given.

3.1 Problem Formulation

NRSFM seeks to reconstruct three-dimensional structure of the deformable object and
camera motion from a series of two-dimensional monocular image tracks. In our setup,
we assume that the dataset consists of N frame of image sequence. J landmarks are
present over all frames. At each frame i ∈ {1, . . . , N}, rigid motion is applied onto the 3D
key points of the object and the 2D camera measurements under orthographic projection
are represented as

pji︸︷︷︸
2×1

= Ri︸︷︷︸
2×3

sji︸︷︷︸
3×1

+ ti︸︷︷︸
2×1

, (3.1)

where sji = [Xji, Yji, Zji]
> and pji = [xji, yji]

> are the 3D coordinates and the 2D projec-
tion of point j at time i respectively. Ri ∈ R2×3 is the orthonormal rotation matrix and ti
is the translation vector, which together comprise the motion field to be recovered. If the
vectors of the J points are stacked up in rows, Equation (3.1) can be changed to

pi︸︷︷︸
2J×1

= Gi︸︷︷︸
2J×3J

si︸︷︷︸
3J×1

+ Ti︸︷︷︸
2J×1

, (3.2)

where Ri is duplicated J times on the diagonal of Gi. The objective of the NRSFM prob-
lem is to recover the 3D structure si as well as the camera motion {Ri,Ti}, which may
be factorized from the 2D observation matrix, although there exists an infinite number of
possibilities if no extra constraints are imposed. Figure 3.1 illustrates the main process of
the NRSFM factorization [TK92, Bra05, TR05]. Note that in case of si being constant over
all frames, this degenerates to the rigid Structure from Motion (SFM) study by Tomasi
and Kanade [TK92].
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Figure 3.1: Factorization technique for NRSFM. The left images are samples of input
frames with landmarks. The goal is to factorize those 2D frames into correct
3D motion and structure matrices.

Previous researches [XCK06, THB08] have already shown that if the shape matrix si is de-
formed arbitrarily, the NRSFM problem is inherently underconstrained. Hence a shape
model must be properly defined. Recently a common method to model shapes is used for
2D shape reconstruction [BV99, BB98] and computer graphics [Par72], which considers
the 3D shape as a linear combination of a dominant rigid body [KsH05] and other defor-
mation bases. Even many physical systems can be accurately represented [BJ05]. To be
more specific on our case, the face model of a specific person may be modeled as a mean
shape plus other bases representing facial expressions, blinking, talking etc. In our work,
this widely accepted assumption is adopted. Let the 3J × 1 matrix s̄ be the mean shape,
the 3J ×K matrix V and the K-dimensional vector zi be the remaining basis shapes and
their weights respectively, where K is the number of articulation shapes apart from the
mean shape, the 3D shape of the ith frame is given as

si︸︷︷︸
3J×1

= s̄︸︷︷︸
3J×1

+ V︸︷︷︸
3J×K

zi︸︷︷︸
K×1

. (3.3)

Note that shapes are stacked in matrix V so that each column represents a basis shape.
With the above setup, if we align the images to the center and drop the translations, our
NRSFM model is derived by combining Equation (3.2) and Equation (3.3) as

pi = Ri(s̄ + Vzi). (3.4)

Since the choice of the shape coefficients zi determines the contribution of the shape bases
and the recovery of the corresponding shape as well, it is studied by various of papers. An
intuitive and popular approach is to embed them into theK-dimensional linear subspace.
But in Section 3.3, we will show that we actually place a Gaussian prior onto the latent
variables zi, which endows the linear subspace model with a probabilistic formulation.

3.2 Initialization

The nature of the EM algorithm introduced in Section 2.1 determines that the initial pa-
rameter values play a significant role on the speed of the convergence and the quality
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3.2. Initialization 27

of the final estimates. In order not to get in a local maximum or minimum, a good and
efficient initialization is desired. Because under the assumption of the shape subspace
model in Section 3.1, the major contribution for shape modeling is the dominant mean
shape component, which is rigid throughout the image sequence, the modified Tomasi-
Kanade algorithm [TK92] for rigid SFM is used as initial motion and structure parameters
in our work, which is initially employed by Torresani et al. in [THB04, THB08].

In [TK92], the rank theorem of rigid SFM is studied. With the help of the additional or-
thonormality constraints, the complete factorization algorithm of the 2D camera matrix is
developed. The first step is to compute the Singular Value Decomposition (SVD) [GR70]
of the registered measurement matrix W̃ with the mean of each row removed as

W̃ = O1ΣO2.

Let O′1, Σ′ and O′2 refer to the first three columns of O1, the first 3×3 submatrix of Σ and
the first three rows of O2. Define

R̂ = O′1(Σ
′)

1
2 ,

Ŝ = (Σ′)
1
2 O′2.

Since there exists a non-degenerate 3× 3 matrix Q so that the true rotation matrix R and
the true shape matrix S are

R = R̂Q,

S = Q−1Ŝ.

Because the true rotation matrix R is subject to the orthonormality constraints, it results
in the following over-constrained system:

î>f QQ>îf = 1

ĵ>f QQ>ĵf = 1

î>f QQ>ĵf = 0

In this equation, if and jf are mutually orthogonal unit vectors that satisfy

|if | = |jf | = 1

and

i>f jf = 0.

By applying the orthonormality constraints, the correct linear transformation matrix Q is
found. Thus, the mean shape S̄ and the rigid motion R are successfully initialized.

To recover the remaining articulated shape bases V, subtract W̃ with the mean shape and
motion estimate

W̃ = W −RS̄.

The residual is fitted separately at each frame i for vki so that

vki = (Ri)
−1W̃i.
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Finally, PCA is applied so that the first principal component of vki is selected for Vk. The
fitting process is proceeded iteratively for the remaining residual until the entire shape
bases is initialized. The whole NRSFM initialization algorithm for our work is listed in
Algorithm 3.1.

Algorithm 3.1 NRSFM initialization algorithm

1: Initialize the mean shape and rigid motion using [TK92].

1(i). Compute the SVD of the registered measurement matrix W̃ = O1ΣO2.

1(ii). Compute the pseudo shape and motion parameters R̂ = O′1(Σ
′)

1
2 and Ŝ =

(Σ′)
1
2 O′2 deviated by a linear transformation Q.

1(iii). Compute Q with the orthonormality constraints.

1(iv). Obtain the true rotation matrix R = ŜQ and shape matrix S = Q−1Ŝ.

2: Compute the residual W̃ = W̃ −RS̄.
3: for k = 1 to K do
4: for i = 1 to N do
5: Compute separately vki = (Ri)

−1W̃i.
6: end for
7: Apply PCA to vki and select the first principal component as Vk.
8: end for

3.3 PPCA Shape Model

In Section 3.1 the basic idea of defining the deformation shapes as a linear combination of
the mean shape and other articulated bases. Although with computational convenience
in mind, a K-dimensional linear subspace is endowed successfully in many applications
[BV99, TP91], for solving the NRSFM problem, there are some noticeable limitations and
drawbacks. For example, Xiao and Kanade [XK04] proved that even when imposing
proper constraints, the linear model could still tend to degeneracy when there is bases
not of full rank three. Another problem is that this approach is very sensitive to the man-
ual selection of the number of shapes K. On the one hand, if K is set too small, the linear
model cannot span the required space of the deformation so that not all variations of the
real-world object can be represented. On the other hand, a large K could not only cause
extra degrees of freedom with noise, but also the NRSFM problem becomes undercon-
strained with the increase of K. When K = 2J , the arbitrary articulation of all key points
makes the NRSFM problem totally unconstrained. Torresani et al. [THB08] employs a
PPCA deformation shape model with unknown priors, which is actually known as the
hierarchical prior in Bayesian statistics [GCSR03]. The shape coefficients are assumed
to come from a normally distributed probability function, while the exact parameters are
not clear in prior. With those unobserved, or latent variables, the EM algorithm solves the
maximum likelihood problems iteratively. During the iterations, one of the parameters of
the distribution and the shape model is kept fixed and the other is fitted to maximize the
likelihood alternately. This probabilistic framework generates the shape model very well
on the fly. It also has an extraordinary ability to handle noisy data, therefore we adopt
this implementation in our work.

PPCA introduced in Section 2.2.2 is a probabilistic enhancement for PCA, a well-established
tool for exploratory data analysis, dimensionality reduction, factor analysis, etc. Here we
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use PPCA to describe the distribution over shapes. Remember that in Equation (3.3), we
define zi as the weights of the shape bases. In PPCA, we place a zero-mean Gaussian
prior distribution on this latent variables

zi ∼ N (0; I), (3.5)

where the covariance matrix I is modeled with the iid assumption through the frames.
Due to the inevitable presence of internal and external noise in image tracks and labeling,
a zero-mean Gaussian noise term

ni ∼ N (0;σ2I)

with variance σ2 is also added to the initial linear subspace modeled in Equation (3.4). So
the new factorization of the 2D measurement matrix is as follows

pi = Ri(s̄ + Vzi) + ni.

In terms of PPCA, the latent variables zi is seen as the “projected” data points, which are
marginalized out in the following EM algorithm. Correspondingly, the “sample” data
points pi is a linear combination of Gaussian distributed variables, and it is also a normal
distribution. It is clear that the conditional distribution with respect to zi gives

pi|zi ∼ N (Ri(s̄ + Vzi);σ
2I).

Its exact distribution can be obtained by marginalizing over zi on the “complete” dataset
{pi, zi} as

p(pi) =

∫
p(pi, zi) d zi =

∫
p(pi|zi)p(zi) d zi,

which yields

pi ∼ N (Ris̄; RiVV>R>i + σ2I). (3.6)

Using PPCA model, the problem of NRSFM is turned into the same as estimating the
Gaussian distribution of the shape weights zi, while the motion and the non-rigid shapes
are learned on the fly. In particular, the joint negative log-likelihood of {pi, zi}

L =
1

2

∑

i

(pi −Ris̄)>(RiVV>R>i + σ2I)(pi −Ris̄) (3.7)

+
1

2

∑

i

log |RiVV>R>i + σ2I|+ JT log(2π) (3.8)

is maximized, which will be discussed in detail in the upcoming part. One of the most
crucial assumptions we discussed before that make the NRSFM solvable is the non-
arbitrariness of the shape deformation. The zero-mean unified Gaussian over the shape
weights zi actually makes the shape si at the ith each frame more or less confined to the
dominant mean shape, which means, each pose is not unconstrained. Therefore no ad-
ditional regularization terms are necessary.The other advantage of the model lies in that
since the shape weights zi are ultimately marginalized out in the EM iterations, the previ-
ous concern for overfitting with a large number of basis shapes K with a linear subspace
model does not occur here.

A closed-form MLE optimization over the log-likelihood function in Equation (3.7) is
not feasible regarding the latent variables and high dimensionality of the datasets. The
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EM algorithm is a powerful tool to handle maximum likelihood problems with latent
variables. In Section 2.1.2, we have given an introduction of its basic idea of iteratively
estimating the likelihood with the data that is present and its applications in related ap-
plications e.g. factor analysis [GH96] and PPCA [Row98]. Our formulation of the specific
EM algorithm is as follow: Since until now the probabilistic distribution of the measure-
ment matrix pi is given individually for each frame i, we need a joint distribution over
all frames for the EM estimates p(p1:N ), which may simply be a multiplication of the
probability in every single frame in Equation (3.6) by

p(p1:N |R1:N , s̄,V, σ
2) =

∏

i

p(pi|Ri, s̄,V, σ
2).

EM is an iterative algorithm by alternating two phases: computing the distribution over
the latent variables in the E-step, and updating the expected log likelihood function in
the M-step.

E-step: In the first phase of the EM algorithm, we begin by obtaining the posterior distri-
bution over zi with respect to the old parameter estimates. Denote q(zi) as this distribu-
tion and we get

q(zi) = p(zi|pi,Ri,Ti, s̄,V, σ
2)

= N (zi|β(pi −Ris̄); I− βRiV),

where β is in the form of

β = V>R>i (RiVV>R>i + σ2I)−1. (3.9)

Note that for computational efficiency, the matrix inversion lemma [Woo50]

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1

is employed, which reveals

β = V>R>i

(
σ−2I−RiV(I + σ−2V>R>i RiV)−1V>R>i σ

−4
)
.

According to the posterior distribution q(zi), the moments of the latent variables

µi ≡ E[zi] = β(pi −Ris̄) (3.10)

φi ≡ E[ziz
>
i ] = I− βRiV + µiµ

>
i (3.11)

are taken.

M-step: In the following M-step, the expected negative log-likelihood function

Q ≡ E[− log p(p1:N |R1:N , s̄,V, σ
2)]

= E[−
∑

i

log p(pi|Ri, s̄,V, σ
2)]

=
1

2σ2

∑

i

E[||pi −Ri(s̄ + Vzi)||2] + JT log(2πσ2)

(3.12)

is to be minimized and the shape and motion parameters are updated simultaneously.
Note that this function may not be optimized in closed form, so the parameters are com-
puted individually to make a better approximation for the log-likelihood function. Thus
this is essentially a generalized EM algorithm.
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3.3. PPCA Shape Model 31

Among the unknown parameters {Ri, s̄,V, σ
2}, the camera rotation matrix Ri is subject

to the orthonormality constraints, which makes it impossible to have a closed-form solu-
tion. Aside from the rotation, the other three parameters can be solved directly. At first,
the mean shape and the remaining shape bases can be recomposed together as a single
matrix to make a more compact update. Accordingly, the shape weights vector zi can be
expanded from K rows to K + 1 rows to insert the unit weight for the mean shape s̄:

Ṽ ≡ [s̄,V]

z̃i ≡ [1, z>i ]>

On the basis of this modification, the first moment defined in Equation 3.10 is naturally
changed to

µ̃i ≡ [1,µ>i ]>,

while the second moment in Equation 3.10 can be approximated as

φ̃i ≡
[

1 µ>i
µi φi

]
.

Using the formulae above, the expected negative log-likelihood function in Equation
(3.12) becomes

Q =
1

2σ2

∑

i

E[||pi −RiṼz̃i||2] + JT log(2πσ2). (3.13)

The updates for each parameter is done by solving for minimizing the value of Q with
respect to itself, and holding the other parameters fixed. We start with the update of the
shape bases Ṽ by setting the partial derivative to zero

∂Q

∂Ṽ
= − 1

2σ2

∑

i

E[R>i (pi −RiṼz̃i)z̃
>
i ]

= − 1

2σ2

∑

i

R>i piµ̃
>
i +

1

2σ2

∑

i

R>i RiṼφ̃i.

By means of the vec and the Kronecker product ⊗, the following rule [Hor86] is given:

vec(ABC) = (C> ⊗A) vec(B)

By applying the vec operator to both sides of the equation, we have

vec
∂Q

∂Ṽ
=

∂Q

∂ vec(Ṽ)

= − 1

2σ2
vec

(∑

i

R>i piµ̃
>
i

)
+

1

2σ2

∑

i

(φ̃
>
i ⊗ (R>i Ri)) vec(Ṽ).

The stationary point is obtained by setting this partial derivative to zero, which yields the
new shape bases

vec(Ṽ)←
(∑

i

(φ̃
>
i ⊗ (R>i Ri))

)−1
vec

(∑

i

R>i piµ̃
>
i

)
.
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The same approach can be applied to solve for the noise variance update by setting the
partial derivative of Q with respect to σ2

∂Q

∂σ2
= − 1

σ3

∑

i

E[||pi −RiṼz̃i||2] +
2JT

σ

to zero, which gives

σ2 =
1

2JT

∑

i

E[||pi −RiṼz̃i||2]

=
1

2JT

∑

i

(
||pi||2 − 2p>i R>i Ṽµ̃i + E[z̃>i Ṽ>R>i RiṼzi]

)

=
1

2JT

∑

i

(
||pi||2 − 2p>i R>i Ṽµ̃i + tr(V>R>i RiṼE[z̃iz̃

>
i ])
)
,

where the last term is derived by the fact that the expression is a scalar, and by the com-
mutativity property of the tr function

tr(AB) = tr(BA)

Then, the final noise variance update is

σ2 ← 1

2JT

∑

i

(
||pi||2 − 2p>i R>i Ṽµ̃i + tr(V>R>i RiṼφ̃i)

)
.

However, the camera rotation parameter Ri is subject to orthonormality constraints,
hence closed-form update like the other parameters is not possible. In the initial paper,
Torresani et al. [THB08] approximates the solution with a single Gauss-Newton step on
the Euclidean space, which is inaccurate and has a theoretically low convergence rate. In
Section 3.5, we propose our optimization technique on the manifold.

3.4 PRPCA Shape Model

In the last section, the NRSFM problem is modeled within a probabilistic framework. Our
observation of the PPCA formulation is that with the iid assumption of the latent vari-
ables z for the weights of shape bases, some relational information between the frames
with the same or similar deformations may be lost. For example, two consequent frames
are more likely to have close relation in the weighs of the shape bases than the frames with
a large time interval between them. So we present a probabilistic relational approach to
the PPCA algorithm for solving the NRSFM problem.

Remember that in Section 3.3, the prior distribution of the latent variables z is given
in Equation (3.5), where the covariance matrix is set as the identity matrix. Here we
substitute I with the inverse of the relational matrix ∆ defined in Equation (2.15). In the
EM iterations, the first moment in the E-step is the same as in Equation (3.10) according to
Equation (2.20). The change lies in the second moment that subject to (2.21), the relational
matrix in added to the initial PPCA Equation (3.11) so that

φi ≡ E[zi∆z>i ] = I− βRiV + µi∆µ
>
i ,
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3.4. PRPCA Shape Model 33

where β is given by Equation (3.9). In the following M-step, based on the above esti-
mates, the closed-form updates for the shape bases Ṽ and noise variance σ2 should also
be modified to

vec(Ṽ)←
(∑

i

(φ>i ⊗ (R>i Ri))

)−1
vec
(
R>(p−Rs)∆µ>

)
,

σ2 ← 1

2JT

(∑

i

(
||pi −Ris||2 + tr(V>R>t RiVφi)

)

− tr
(

2(p−Rs)>RVµ∆
))

.

In order to make the most of the PRPCA model, a reasonable relational matrix ∆ for our
specific use remains to be found. Intuitively, the statistics of the geometric variation of
the input image tracks should be exploited. Unfortunately, since various pose changes
are present in the original image sequence, the analysis is not possible directly without
further processing. The Point Distribution Model (PDM) algorithm, which is employed
by Cootes et al. for Active Shape Model (ASM) [CTCG95] and Active Appearance Model
(AAM) [CET98], is a powerful tool in computer vision to statistically study the shape
of objects. It calculates the average positions and several aspects in which each sample
tends to vary from the mean. PDM requires a set of landmark points to provide sufficient
detail and identify the object precisely. In practice, our face datasets are labeled on the
contour of the cheeks, eyes and noses, which is in general adequate for the algorithm and
the geometry of the face shape is well approximated.

The first and most important step of the PDM algorithm is to align the training set so that
the landmarks are positioned equivalently and the shapes are as closely related spatially
as possible. The generalized Procrustes analysis [Gow75] aims to minimize the weighted
squared error through the image sequence by scaling, rotating and translating the train-
ing shapes. Let

xi = [xi1, yi1, xi2, yi2, . . . , xiN , yiN ]>

denote the vector for ith shape consisting of N landmark points and

M(s, θ)[x] =




s cos(θ)xi1 − s sin(θ)yi1
s sin(θ)xi1 + s cos(θ)yi1

...
s cos(θ)xiN − s sin(θ)yiN
s sin(θ)xiN + s cos(θ)yiN




be the operation of scaling by s times and rotating by θ. To start with, consider two shapes
xi and xj . If proper M(sj , θj) and translation [txj , tyj ] are applied onto the second shape
xj , the weighted squared error is given by

Ej = (xi −M(sj , θj)[xj ]− tj)
>W(xi −M(sj , θj)[xj ]− tj),

where the diagonal of the matrix W is made of the weights for each point. It is utilized
to give more emphasis to the the points which are more “stable” over the frames. That
means, those points which move less in comparison with other points gain higher weight.
Thus, a distance matrix Rkl is defined to hold the distance between the kth point and the
lth point in a single shape. The variance of the distance Rkl over all shapes in the image
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sequence VRkl
should mean the inverse of the weights according to the above assumption.

Then the weight wk for the kth point is

wk =

(
N∑

l=1

VRkl

)−1
.

This weight formulation is rational, because if the distance of a certain point to the oth-
ers remains unchanged or changes not much for all images, the variance of the distance
tends to be small. Therefore the weight is set to a large value and vice versa. At the
end, least squares approach is used and the resulting linear equations are solved for the
alignment parameters. The generalized Procrustes alignment algorithm is run several it-
erations until preset threshold value is reached. Algorithm 3.2 summarizes the alignment
approach.

Algorithm 3.2 Generalized Procrustes algorithm for image alignment

1: Align each shape with the first one in the dataset with rotation, scaling and transla-
tion.

2: repeat
3: Compute the mean shape of the aligned shapes.
4: Normalize the current mean.
5: Align each shape with the mean shape.
6: until Convergence.

After the alignment process, all shapes are normalized and aligned to the centroid. As-
suming the scattering is a Gaussian in the space, PCA is capable of retrieving the vari-
ations of the shapes and the eigenvectors and eigenvalues of the covariance matrix is
obtained. Each principal axis represents a mode of variation and the corresponding vari-
ance σ2i is given by the eigenvalue λi. From Section 2.2.1, we know that largest eigen-
vectors conform to the longest axes of the Gaussian ellipsoid and any shape x can be
approximated by the first few eigenvectors if they are sorted in descending order:

x = x̄ +

D∑

i=1

bipi (3.14)

In the equation, x̄ is the aligned mean shape, while pi and bi are the ith eigenvector and
its weight. Because the eigenvectors obtained by PCA is linearly independent, Equation
(3.14) is able to generate new shapes within the span subspace, if suitable ranges of the
weights bi are selected. Empirically, it is considered to be safe to allow the weights to
vary within ±3 standard deviations

−3
√
λi ≤ bi ≤ 3

√
λi.

A descriptive example of tuning the PCA parameters is illustrated in Figure 3.2 for our
Vicon face dataset described in Section 4.2.1. In this plot, the largest three eigenvalues
and the corresponding eigenvectors are analyzed and the shape variation is ranged from
−2 to +2 times of the standard deviation. Note that in the middle column, without any
variation in pose and expression, all five plots represent the mean shape of the dataset. In
the first row, it is clear to figure out that this principal axis describes the pose change refer-
ring to the horizontal movements, which is totally understandable because even without
doing alignment and PCA, the panning action of the head is easy to recognize as the
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(a) b1 = −2
√
λ1 (b) b1 = −

√
λ1 (c) b1 = 0 (d) b1 =

√
λ1 (e) b1 = 2

√
λ1

(f) b2 = −2
√
λ2 (g) b2 = −

√
λ2 (h) b2 = 0 (i) b2 =

√
λ2 (j) b2 = 2

√
λ2

(k) b3 = −2
√
λ3 (l) b3 = −

√
λ3 (m) b3 = 0 (n) b3 =

√
λ3 (o) b3 = 2

√
λ3

Figure 3.2: PDM result on the Vicon dataset. The effects of the first three eigenvectors
applied to the mean shape are illustrated in each row. From left to right, the
weight increases from −2 to +2 times of the standard deviation with respect
to the eigenvalue.

largest variation of the 2D camera data. The second and the third eigenvectors control
the shape variations. The face model becomes wider when negative weight of the second
component is added, and vice versa. The third row consists of the expression of opening
and closing the mouth. As a continuous action of the mouth movement, eyes and eye-
brows naturally moves up and down when the mouth opens and closes, which is also
well modeled by PDM. We observe that starting from the fourth PCA axis, no more valu-
able shape information is given and the model starts to fit noise. The normalized sum of
the eigenvalues also suggest that the first three eigenvalues add up to more than 95% of
the total sum.

After all, by applying the PDM to our face datasets, a set of D-dimensional eigenvectors
are computed, which are orthogonal and linearly independent. So the 2D shape in each
frame can be approximately represented by the feature vector b of the coefficients bi using
Equation (3.14). Since the ordered eigenvalues of the eigenvectors pi fall off very quickly,
bi should be normalized to eliminate the difference of the magnitudes. We implement this
normalization by dividing each bi with the variance of the corresponding eigenvectors,
which reveals a new feature vector c. Based on the observation in Figure 3.2 that the first
one or two eigenvectors normally indicate pan or tilt of the head orientation, which are
irrelevant to the face shape, those coefficients are excluded from c. The symmetric matrix
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36 3. Methodology

A of PRPCA is then obtained by calculating the framewise distance of ci and cj :

Aij = ||ci − cj ||2 =

√√√√
N∑

k=1

|cik − cjk |2 (3.15)

Finally, the relational matrix ∆ is given by Equation (2.15) with γ typically being a very
small positive value to guarantee the positive definiteness of ∆.

In practice, PDM may also be used to determine the the number of the non-rigid shapes.
This is achieved by setting a threshold of the sum of the sorted normalized eigenvalues
in the PCA process. The number of the selected eigenvalues is considered to be a reliable
guess for the number of the shape bases.

3.5 Rotation Update on Manifold

In Torresani et al.’s approach [THB08] of solving the NRSFM problem with PPCA, the
partial derivative of the negative log-likelihood Q in Equation (3.13) with respect to the
rotation R

vec
∂Q

∂R
≈ A vec(ξ̂) + B,

where vec(ξ̂) is the twist vector for the equation and ξ̂ is the skew-symmetric matrix in
the form of

ξ̂ =




0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0


 .

Minimizing

||A vec(ξ̂) + B||F

with respect to ξ reveals

vec(ξ̂)← −A+B.

Note that the operator A+ denotes the Moore–Penrose pseudoinverse of A. In the pres-
ence of the orthonormality constraints, the incremental rotation update must be per-
formed by means of the exponential map with the skew-symmetric matrix ξ̂. Expansion
of Taylor series yields

∆ = exp(ξ) = I + ξ̂ +
ξ̂
2

2!
+ . . . .

Thus the new rotation matrix is obtained by dropping the nonlinear terms as

Rnew = (I + ξ̂)R.

We notice that the exponential map of the skew-symmetric matrix ξ̂ is employed to form
the step of a single Gauss-Newton step. Note that without defining an appropriate metric
on the manifold, a manually selected and fixed updating step length is implemented,
which declines the performance obviously when faced complex setups. Moreover, the
Gauss-Newton optimization has a theoretically low convergence rate.
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3.5. Rotation Update on Manifold 37

The rotation matrix R is orthogonal matrix with determinant 1, which lies exactly on the
manifold of the special orthogonal group SO(3) defined in Equation (2.23). Hence in-
stead of trying to put an approximate algebraic or numeric constraint on the Euclidean
space RN and projecting them back onto the SO(3) manifold, an unconstrained opti-
mization on the manifold is a natural generalization and is expected to perform better.
In Section 2.3, we have already introduced the fundamental of the canonical Riemannian
structure of those orthogonal manifolds in order to generalize a Riemannian Newton
method on them. Remember that besides the gradient and Hessian, definition of the up-
date along the geodesic of the manifold must be known to ensure that the update is valid,
because unlike on the Euclidean space, update path is no longer a straight line but rather
a geodesic curve, which stays on the surface of the manifold all the time.

We define the objective function F with respect to the rotation matrix R for the manifold
optimization as follows

F (R) = E[||p−R(s̄ + Vz)||2F ].

Note that in our NRSFM formulation in Equation (3.4), the camera rotation matrix R is
in fact a 2× 3 matrix. Fortunately, we can parameterize it by multiplying a 2× 3 identity
projection matrix

Π =

[
1 0 0

0 1 0

]
,

so that

R2×3 = ΠR3×3.

In this way, the special orthogonal group SO(3) is still applicable to our camera rotation
parameter.

Since R ∈ SO(3), its tangent vector ∆ ∈ T (SO(3)) is given by

∆ = Rû,

where û is the skew-symmetric matrix of vector u. For the Riemannian manifold, the
canonical metric can simply be induced from the Euclidean metric as

gc(∆,∆) =
1

2
tr(∆>∆).

The explicit formula for geodesics [MKS99] on SO(3) at R in direction ∆ is then

R(t) = exp(R,∆t)

= R exp(ω̂t)

= R
(
I + ω̂ sin(t) + ω̂2(1− cos(t))

)
,

where t ∈ R, ω = R>∆ ∈ so(3) and so(3) is the Lie algebra associated with the SO(3)

group. The last equation is called the Rodrigues’ rotation formula [MSZ94].

To obtain the gradient and Hessian, we first derive the first and second order derivative
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for the geodesic R(t) with respect to t:

d R(t)

d t

∣∣∣∣
t=0

= Rω̂ cos(t) + Rω̂2 sin(t)
∣∣
t=0

= Rω̂

= R(R>∆)

= ∆

d2 R(t)

d t2

∣∣∣∣
t=0

= −Rω̂ sin(t) + Rω̂2 cos(t)
∣∣
t=0

= Rω̂2

= R(R>∆)(R>∆)

= ∆(R>∆)

= −∆∆>R

Note that the last equation is derived from the property of tangent space on the Stiefel
manifold in Equation (2.24) that R>∆ is a skew-symmetric matrix. The gradient and
Hessian in direction ∆ ∈ T (SO(3)) can be derived given the geodesic definition of a
function in Equation (2.26) and Equation (2.27) and the estimates in the M-step of PPCA
in Equation (3.10) and Equation (3.11) of Section 3.3:

dF (∆) =
dF (R(t))

d t

∣∣∣∣
t=0

= RVφV>Ṙ> − pµ>V>Ṙ>|t=0

= RVφV>∆> − pµ>V>∆>

HessF (∆,∆) =
d2 F (R(t))

d t2

∣∣∣∣
t=0

= ṘVφV>Ṙ> + RVφV>R̈> − pµ>V>R̈>|t=0

= ∆VφV>∆> −RVφV>R>∆∆> + pµ>V>R>∆∆>

For any arbitrary pair of vectors X,Y ∈ T (SO(3)), polarization helps compute HessF (X,Y)

with

HessF (X,Y) =
1

4
(HessF (X + Y,X + Y)−HessF (X−Y,X−Y))

=
1

2

(
XVφV>Y> + YVφV>X>

−RVφV>R>XY> −RVφV>R>YX>

+ pµ>V>R>XY> + pµ>V>R>YX>
)
.

With the requirements for generalizing Newton’s method being ready, the optimal up-
dating vector on the manifold can be found by modifying the original Newton Equation
(2.22) to

∆ = −Hess−1 G,

assuming that the Hessian is non-degenerate. It is the same as finding a vector ∆ that
satisfies for all vector fields Y

HessF (Y,∆) = gc(−G,Y) = −dF (Y),
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where G = ∇F stands for the gradient. The Hessian can be uniquely determined by
using an orthonormal basis {Ek}, k = 1, 2, 3 into the equation above as

HessF (Ek,∆) = −dF (Ek).

For simplicity, the standard basis ek for R3 is chosen so that Ek = Rêk ∈ T (SO(3)). Thus,
the 3× 3 Hessian matrix H and the three-dimensional gradient vector g can be obtained:

Hkl = HessF (Ek,El),

gk = dF (Ek), k, l = 1, 2, 3

Then solving for the vector u = [u1, u2, u3]
> ∈ R3 using

u = −H−1g.

Finally, the desired updating vector ∆ = Rû is done. The last step is to update the current
rotation along the geodesic in the direction of this vector. The algorithm is summarized
in Algorithm 3.3.

Algorithm 3.3 Minimization for the objective function F (R) = E[||p−R(s̄ + Vz)||2F ]

1: At the point R ∈ SO(3), compute the optimal updating vector ∆ = −Hess−1 G.

1(i). Choose basis tangent vectors Ek = Rêk ∈ T (SO(3)), with ek for 1 ≤ k ≤ 3 the
standard basis for R3.

1(ii). Compute the 3× 3 matrix Hkl = HessF (Ek,El), 1 ≤ k, l ≤ 3.

1(iii). Compute the three-dimensional vector gk = dF (Ek), 1 ≤ k ≤ 3.

1(iv). Compute the vector u = (u1, u2, u3)
> ∈ R3 such that u = −H−1g.

1(v). The optimal updating vector ∆ = −Hess−1 G = Rû.

2: Update the rotation R.

2(i). Move R in the direction ∆ along the geodesic to

exp(R,∆t) = R
(
I + ω̂ sin(t) + ω̂2 (1− cos(t))

)
,

where t =
√

1
2 tr(∆>∆) and ω = R>∆

t .
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4. Experiments

This chapter demonstrates the performance of our NRSFM algorithm with the experi-
ments conducted on the real-world face datasets, which are described first in this chapter.
Thereafter, results of PDM for relational matrix construction are given. In the following
sections, studies on different numbers of non-rigid shapes are presented. In order to
test the robustness of our algorithm and the state-of-the-art algorithm, Gaussian noise is
manually added to the original data with various noise levels.

4.1 Experimental Setup

Three types of experiments are conducted on real-world face datasets to qualitatively and
quantitatively evaluate the performance of our work in comparison with the state-of-the-
art algorithm proposed by Torresani et al. in [THB08]. In the first experiment, generalized
Procrustes analysis is applied to the 2D camera measurement data to first align the faces
from different pose changes, and to obtain the statistical relations between each frame
using PCA. A number of tests are made based on the number of deformation shapes K
to see the choice of K has how much impact on the overall performance. Another experi-
ment scenario is to understand the robustness of the 3D reconstruction in the presence of
noise.

We compare the following models and algorithms overall:

• PPCA. The baseline algorithm based on PPCA using the EM algorithm proposed
by Torresani et al. in [THB08], which is described in Section 3.3.

• PRPCA. Our extended PPCA algorithm embedded with the relational shape in-
formation described in Section 3.4 to embed relational information between the
frames.

• Manifold PPCA. Our solution of the orthonormality constraints with the general-
ized Newton’s method on Manifold, which is described in Section 3.5.

In the remainder of this chapter, PPCA, PRPCA and Manifold PPCA are called to repre-
sent the approaches above.

Because the EM algorithm is employed in PPCA to maximize the data likelihood, no
training phase is required in prior and the face model is learned on the fly. After align-
ing the image frames to the centroid, a total of 50 EM iterations are run and the relevant
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parameters for shape and motion recovery are computed. Torresani et al. [THB08] found
that when the noise variance σ2 is forced to remain a large value in the initial EM itera-
tions, the NRSFM algorithm is more likely to converge to a better solution. An annealing
parameter is applied to σ2 for iterations in range of 1 ≤ n ≤ N

2 so that

σ2 ← σ2

(
1 +N

(
1− n

N
2

))
,

where n is the current iteration count and N is the total iteration number. Thus, the an-
nealing parameter decreases from a relatively large value in the first iteration and reaches
1 at the middle of the EM iterations. We also adopt this tweak and keep the setup of
our PRPCA and Manifold PPCA algorithms the same as the baseline algorithm. All the
algorithms in this work are implemented using the numerical computing environment
MATLAB R2010a [Mat]. The PPCA source code is provided by Torresani et al. [THBa].

Our evaluation criteria is the same as in the previous papers, i.e. the sum of squared
differences between estimated 3D shapes to ground truth depth with camera rotation
also being applied

||ŝ1:T − s1:T ||2F ,

where the lowering F denotes the Frobenius norm [GVL96]:

||A||F =

√√√√
M∑

i=1

N∑

j=1

|aij |2

In the experiments with posterior zero-mean Gaussian additive noise added, the noise
level is plotted as the ratio of the noise variance to the norm of the 2D measurements:

JTσ2

||p1:T ||F
.

The noise levels range from 0% to 30% with 2% step and the trials for each level of noise
were averaged over 10 runs.

4.2 Experimental Data

Experiments are conducted on two different real-world face datasets. They are described
in detail in this section.

4.2.1 Vicon Dataset

The first dataset is made public available for evaluation purposes by Torresani et al. [THBb],
which is first employed in [THB08]. The image sequence is captured with a Vicon opti-
cal motion capture system. This dataset contains only a single subject with 40 markers
attached to the face. The 3D position of the markers are estimated using triangulation. In
the totally 316 frames long sequence sampled at 15 Hz, the subject made a limited range
of facial expressions and head pose changes. Note that the tracking is very accurate using
the markers with little noise. An illustration of he mean shape and the other deforma-
tion shapes applied to the mean shape is shown in Figure 4.1. Note that the lines are not
present in the original dataset. They are shown for the sake of a better visualization. The
mean shape represents the neutral expression, whereas the deformation bases model the
open and close actions of the mouse and eyes.
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(a) s̄ (b) s̄ + 3s1 (c) s̄− 3s1 (d) s̄ + 8s2 (e) s̄− 8s2

Figure 4.1: The Vicon face dataset with the first two shape bases applied to the mean
shape. [THB08]

4.2.2 BU-3DFE Dataset

The second dataset is a subset of the BU-3DFE dataset, which is created by the Bing-
hamton University for 3D facial expression analysis. The complete dataset is very large,
consisting of 100 subjects, 56 females and 44 males, covering a wide age range and dif-
ferent ethnic groups. Seven expressions, neutral, happiness, disgust, fear, angry, surprise
and sadness, are performed by each subject. Frontal-view textures are also provided. We
randomly select 300 frames for our test. Since only 3D face feature points are present,
random pose changes are applied and projected to the 2D input data. Note that the
hand-labeled 83 marker points make noticeable noise in the original measurements. The
purpose of this test is to learn how good universal face model can be generated using
NRSFM algorithms. Four sample subjects of the dataset are shown in Figure 4.2. In the
first column, the 83 feature points are labeled with white dots.

4.3 Experimental Results

This section presents a detailed description of the experiments. Possible causes of perfor-
mance improvements and decreases are analyzed.

4.3.1 Results of Relational Information

The goal of this experiment is to assess how PDM works with various pose and facial
expression variations and to give an illustration of the constructed relational matrix for
PRPCA. The experiment is done on both of our face datasets. PDM is carried out directly
on the 2D camera measurements. After aligning the feature points to be able to compare
equivalent points from different frames, the statistical relational information is extracted
by PCA. A descriptive introduction of this approach is given in Section 3.4.
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Figure 4.2: Four sample subjects of the BU-3DFE dataset showing various expressions. In
the first column, the 83 feature points are marked with white dots. [YWS+06]
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In Section 3.4, PDM result on the Vicon dataset is already shown in Figure 3.2. On our
second dataset, the BU-3DFE face dataset, the PDM result is given in Figure 4.3. Because
our original feature points only contain frontal view, zero-mean Gaussian pan and tilt
are added as the rotation of the face and projected to the 2D camera measurements. The
effects of the pose variations are seen in the first two rows of the plot. The behavior of the
first row is somewhat similar to the experiment on the Vicon dataset. The tilt movement,
which means to rotate in a vertical plane, is modeled with the second principal compo-
nent. If a weight of −2

√
λ2 of that shape basis is added, the new synthesized face model

faces up. And with a positive weight imposed, the face model looks down. More notable
changes in the width of the face is seen by applying the same amount of weight of the
third eigenvector. This is because the Vicon dataset only consists of one subject, while
in BU-3DFE, more subjects with a large variety of face shapes are available. As a result,
more variation in this aspect is utilized to make a good model. In the final row, the mouth
movement is also modeled as is seen in the previous experiment. Since the first two PCA
component correspond to rigid movements, we take from the relational information from
the third parameter to calculate the relationship between shapes using Equation (3.15).

A partial relational map constructed using PDM on the BU-3DFE dataset is illustrated in
Figure 4.4. The color in the relational matrix plot is the same as in a “heat map”, which
reveals a higher value with warm colors and a lower value with cold colors. Thus, higher
relation between frame 20 and frame 22, and lower relation between frame 6 and frame 20
are seen in the plot. From the profile view of these frames on the right side of the figure,
we see that the shape of the cheek in frame 6 is obviously different than those in frame
20 and frame 22. Moreover, from the positions of the facial features we can also judge
that the faces in the last two frames are the same one, while in frame 6, it is from another
subject. Despite the fact that the first two faces both have a neutral expression, their
shape difference is properly modeled in the relational matrix. From the result, we notice
that although the BU-3DFE dataset covers a lot of subjects, its statistical information can
still be effectively explained by PDM. This gives confidence of our 3D reconstruction
algorithm based on PRPCA, which indeed yields a good performance on this dataset.

4.3.2 NRSFM Results with Di�erent Numbers of Basis Shapes

The experiments conducted in this section intend to assess the performance of our NRSFM
algorithms with different basis shape numbers. Since with the linear shape model, the
choice of the shape number K is very sensitive in the previous work. Problems with in-
sufficient shape number or overfitting may occur. Therefore, we test with a range from
one deformation shape up to ten, in order to evaluate if the probabilistic approach really
solves these problems.

The first Vicon dataset is a quite simple scenario. Since it is tracked using precise mark-
ers, we are able to evaluate on almost noise-free input data. The PDM analysis learned
in Section 4.3.1 also suggest the number of the deformation bases be quite small. From
the quantitative results in Figure 4.5, none of the evaluated algorithms exceed a recon-
struction error of 3% except for the model with only one deformation shape basis, while
the baseline PPCA performs slightly better. Unlike the conventional linear subspace
model, which faces the overfitting problem with the basis shape number K growing up
[THB08], here the probabilistic models learn the distribution parameters without fitting
noise, which is seen from relatively constant error rates. Manifold PPCA has a small jump
from seven shape bases to eight, which reaches about 3% error. But starting from K = 9,
it stops growing up and the error rate re-stabilizes.
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Figure 4.3: PDM result on the BU-3DFE dataset. The effects of the first four eigenvectors
applied to the mean shape are illustrated in each row. From left to right, the
weight increases from −2 to +2 times of the standard deviation with respect
to the eigenvalue.
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Frame 20

Frame 6

Frame 22

Frame 20

Frame 6

Frame 22

Figure 4.4: Plot of the partial relational matrix from the BU-3DFE dataset on the left. The
heat color map reveals a higher relation between frame 20 and frame 22, and a
lower relation between frame 6 and frame 20. These sample frames are plotted
on the right respectively.
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Figure 4.5: Reconstruction error as a function of the number of basis shapes on the Vicon
dataset.
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Figure 4.6: Reconstruction error as a function of the number of basis shapes on the BU-
3DFE dataset.

The BU-3DFE dataset contains a variety of diverse facial expressions, which make it an
ideal dataset for evaluating deformation shapes. Moreover, as many as 100 subjects are
included in the dataset. So this is in a mostly different situation as with the Vicon data
and the goal of this test is to learn how good a universal face model can be generated
using the NRSFM algorithms. In Figure 4.6, our Manifold PPCA outperforms the baseline
algorithm with a 6% to 8% absolute error gap in overall, regardless of the choice of K,
which demonstrates a huge relative performance rise of 30% to 40% equivalently. It is also
interesing to observe that with the help of the additional relational knowledge between
frames and shapes, PRPCA is able to beat PPCA in this experiment with ca. 10% relative
performance gain. Since the BU-3DFE dataset with a lot of subjects is more complex, all
approaches need a larger K to model the shape parameters, but tuning this number does
not cause much difference in the performance.

We also give the graphical reconstructions with five sample frames of all three algorithms
for visualization. The knowledge from the results above revealing an insensitive impact
of the choice of K, we select the median of five basis shapes. The first row shows the
2D tracks as inputs and the following rows give the plot of the baseline as well as our
reconstructions in colored dots juxtaposed with the ground truth in black circles. Note
that in order to emphasize the effect of the 3D depth recovery, these plots are shown from
a different viewpoint, which is perpendicular to the original 2D inputs. On the Vicon
dataset in Figure 4.7, all the three algorithms yield good structure and motion recovery
and most of the feature points are almost perfectly positioned. Although a few misplaced
features are visible, the reconstruction results are pretty satisfying.

In Figure 4.8, the qualitative results of the reconstructions is plotted. Unsurprisingly, the
huge improvement of Manifold PPCA is also seen in the qualitative results. As we can
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Figure 4.7: Vicon 2D tracks in the upper row, reconstruction results of PPCA, PRPCA and
Manifold PPCA in the second, third and fourth row respectively. Images are
captured at frame number 50, 100, 150, 200 and 250 respectively. Ground truth
features are illustrated in black circles and reconstructions are colored dots.
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Figure 4.8: BU-3DFE 2D tracks in the upper row, reconstruction results of PPCA, PRPCA
and Manifold PPCA in the second, third and fourth row respectively. Images
are captured at frame number 50, 100, 150, 200 and 250 respectively. Ground
truth features are illustrated in black circles and reconstructions are colored
dots.

see in the first row, all of the frames contain different poses and facial expressions. In con-
sequence, the recovered models in the following rows are hard to fit all shape instances
for all of the three approaches. Once again, the PPCA and the PRPCA algorithms gener-
ate similar outcomes with hardly visible distinctions. For example, in frame 100, PPCA
recovers the 3D motion better than PRPCA. On the other hand, PRPCA gets slightly bet-
ter shape reconstructions in frame 200 and 250. However, our Manifold PPCA approach
achieves clearly better results than the state-of-the-art. It is obvious that PPCA’s inaccu-
rate rotation approximation limits its result to getting better rotation estimate in frame
100. It also has difficulties to recover the contours of the faces correctly. Especially in
frame 250, both PPCA and PRPCA lose the 3D depth information to some extent, whereas
the Manifold PPCA method clearly performs better and recovers most of the key points
correctly.

4.3.3 NRSFM Results with Noise

The real-world situation distinguishes itself from the image sequence of the experiments
in that instead of tracking the feature points with markers, they are more likely outputs
from a certain tracking algorithm. That means, the presence of noise must not be over-
looked when evaluating the NRSFM algorithms. For this purpose, another experiment
is conducted in order to investigate how the performance drops with additive noise. To
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Figure 4.9: Reconstruction error with additive Gaussian noise up to 30% on the Vicon
dataset. Results are averaged over 10 runs and error bars for standard devia-
tions are also plotted.

eliminate the affect of random extremes at some noise level, each trial is run 10 times and
the results are averaged. The noise levels span from 0% (no noise) to 30% with 2% step.

As can be observed from Figure 4.9, which plots the reconstruction errors on the Vicon
dataset with additional noise, all algorithms continue their good outputs at the beginning
in the noise-free experiment in Figure 4.5 and have practically the same error rate up to
6% noise. With more added noise, PPCA and PRPCA start to degenerate much more
significantly than the Manifold PPCA approach. Starting from 20% noise level, the result
gets 50% lower error rate than PPCA. That is most likely because in severe cases of noise,
it is difficult for PPCA’s rotation approximation in finding the updating direction and
projecting back to the original manifold than with less noise. Unfortunately, PRPCA is
still unable to outperform PPCA in this case, which is on average 2% to 5% inferior to the
baseline algorithm. It also worth mentioning that Shaji and Chandran [SC08] also made
evaluation on the Vicon dataset with additive noise. From their plot the performance de-
grades very quickly with noise level over 20%. However, our probabilistic approach on
manifold does not suffer from this problem. Error bars are also plotted to demonstrate the
standard deviations of each measurement. The longer error bars for PPCA and PRPCA
show the instability of their performances with additive noise. For Manifold PPCA, how-
ever, the error bars are hardly visible for most of the measurements, which indicates its
robustness against noise.

Since the feature points of the BU-3DFE dataset are manually labeled, noticeable noise
can already be seen from the 2D input data. The multiple subjects may also be regarded
as an obstruction or interference to the NRSFM model under the assumption of the lin-
ear shape basis. Hence by adding more Gaussian noise to the data in Figure 4.10, PPCA
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Figure 4.10: Reconstruction error with additive Gaussian noise up to 30% on the BU-3DFE
dataset. Results are averaged over 10 runs and error bars for standard devi-
ations are also plotted.

and PRPCA do not deteriorate as rapidly as on the “clean” Vicon dataset in Figure 4.9
with the increase of noise. Although the reconstructions degrade at a similar rate and the
performance gap is kept throughout the experiment, Manifold PPCA is by far the best ap-
proach. Even with as much as 30% additive noise, it outperforms both PPCA and PRPCA
on the noise-free data. These results reveal that to model more complicated shapes, an
optimal rotation estimation using manifold optimization techniques is superior.

4.3.4 Subject Speci�c Analysis on the BU-3DFE Dataset

Given the improved performance on the BU-3DFE dataset over the state-of-the-art algo-
rithm, it is obvious to conclude that using relational information and generalization of the
Newton’s method on manifold to solve the orthonormality constraints, both PRPCA and
PPCA are capable of learning a better universal shape model on a dataset that contains
more than one subject. Due to the contrary results compared to Figure 4.5, it is also inter-
esting to see how our algorithms perform with a single subject. We make this experiment
setup as close as the Vicon dataset so that five different subjects are selected. By applying
zero-mean random pan and tilt as head pose, five new sub-datasets with a single subject
of BU-3DFE are constructed. From the results in Table 4.1, Manifold PPCA still has the
leading performance in almost each test except for subject 2 against PPCA, which has
nearly the lowest reconstruction error for all algorithms. That proves again that PPCA’s
rotation approximation is only successful for uncomplicated motion and structure recov-
ery. Beyond that, the results of Manifold PPCA are considerably more stable. From the
fact that PRPCA is again unable to outperform the baseline algorithm, we infer that it is
more appropriate for the scenario with multiple subjects.
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Mean
PPCA 6.28% 5.06% 10.38% 5.29% 8.97% 7.20%

PRPCA 8.94% 7.45% 11.70% 7.20% 9.43% 8.94%
Manifold PPCA 5.15% 5.35% 6.61% 4.53% 5.07% 5.34%

Table 4.1: Subject specific reconstruction results on the BU-3DFE dataset.

Mixed average
PPCA 16.4%

PRPCA 14.4%
Manifold PPCA 8.0%

Table 4.2: Subject independent reconstruction results with five subjects on the BU-3DFE
dataset.

To make further investigation on the basis of the subject specific experiment above, we
make a new subset of the BU-3DFE dataset with exclusively the frames of the five subjects
in Table 4.1. With the new image sequence, we intend to conduct a subject independent
reconstruction test. As is seen in Table 4.2, our Manifold PPCA approach succeeds in
building a generic model with the least reconstruction error increase of only ca. 2%–3%
from the person specific model. In contrast, PPCA more than doubles the reconstruction
error as well as PRPCA. As a conclusion, our proposed Manifold PPCA outperforms the
state-of-the-art algorithm in nearly all situations, while PRPCA takes the advantage in
modeling subject independent generic face model.

4.3.5 Convergence

In Section 2.3, we have learned that the generalized Newton’s method employs the sec-
ond order derivative, which has a theoretically better convergence property and is less
possible to be stuck at a local minimum than the approximated Gauss-Newton step. In
the following experiments, the 3D reconstruction error of each EM iteration is plotted in
order to evaluate the convergence property of the PPCA and Manifold PPCA.

In the only case that PPCA performs slightly better than our Manifold PPCA, the conver-
gence results are plotted in Figure 4.11. After the initial phase, both curves descend in a
similar way and the Manifold PPCA reaches its minimum earlier at the 37th iteration.

On the BU-3DFE dataset without noise, the convergence results illustrated in Figure 4.12
are quite surprising. Starting from the same initialization, PPCA goes almost directly up-
wards. The more iterations are run, the higher 3D reconstruction error is reached. A pos-
sible cause of this phenomenon is that the rotation approximation employed by PPCA is
problematic with the variation of multiple subjects in the BU-3DFE dataset. Note that the
curves correspond to the reconstruction error measured by the 3D ground truth, where
the ground truth is not available in the real NRSFM process. Hence with the negative
log-likelihood objective function out of the 2D input data still decreasing during the EM
iterations, it is not possible for PPCA to predict the failed recovery and stop the algorithm
in time.

In the experiments with additional noise of 20%, the results for the Vicon dataset and
the BU-3DFE dataset are shown in Figure 4.13 and Figure 4.14 respectively. In both
plots, PPCA fails to make any improvements to the 3D reconstruction after the initial-
ization. Employing the same probabilistic approach, however, Manifold PPCA continu-
ously makes a better reconstruction by updating the rotation parameters on the manifold
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Figure 4.11: Convergence results without additive noise on the Vicon dataset.
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Figure 4.12: Convergence results without additive noise on the BU-3DFE dataset.
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Figure 4.13: Convergence results with 20% additive noise on the Vicon dataset.

of the orthonormal group. The results clarify the fundamental problem why PPCA is
increasingly affected by the noise added in Section 4.3.3.
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Figure 4.14: Convergence results with 20% additive noise on the BU-3DFE dataset.
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5. Conclusion

Non-Rigid Structure from Motion—known as recovering three-dimensional object struc-
ture and camera motion from 2D monocular sequence of images—has become one of the
most attractive and important tasks of 3D reconstruction because of its simplicity in com-
parison to other technical configurations. In this thesis, possible approaches of NRSFM
have been intensively studied to improve the recovery performance of structures as well
as rigid motions.

In order to solve this inherently underconstrained problem due to the additional degrees
of freedom than in the rigid case, a low-rank subspace was employed. A probabilistic
framework was built on the basis of PPCA due to its better performance than the closed-
form solutions under noisy environment. With our PRPCA extension with relational
shape information between frames, improved results over the baseline algorithm were
obtained on the BU-3DFE dataset with multiple subjects, which met our expectation.

As a primary contribution of this work, we have presented a novel solution to unleash the
orthonormality constraints of camera rotation matrix in the NRSFM problem by general-
izing the Newton’s method on the Riemannian manifold. Needless to conduct complex
approximations, performing rotation update on the SO(3) manifold implicitly ensures
the validity of the constraints. In the experiments on the Vicon dataset without noise,
we achieved comparable results with the state-of-the-art PPCA algorithm. With addi-
tional noise, this approach performed significantly better. Furthermore, on the BU-3DFE
dataset it almost doubled the performance in all tests. As a conclusion, we have shown
that the proposed approach is robust against noise, which indicates that it has more capa-
bility to deal with real-world data. Moreover, the superiority with multiple subjects also
suggested the extreme importance of an optimal rotation estimation.

Based on the current system, several possibilities in future improvements are considered.
We did find that although the performance was significantly improved on the BU-3DFE
dataset, the linear subspace model somehow limited the modeling of multiple subjects.
For example, articulated [PBS+09] or nonlinear time series models [PRM01, WFH06] can
provide better spatial and temporal representations. Another flaw of the current formu-
lation is the orthographic or weak-perspective camera model, which can be replaced by
the more realistic full-perspective camera model [LDBA06].

There is also some space for improvements in the core algorithms. The PRPCA-based
approach failed to perform better PPCA in the single subject case. Alternative methods

57



58 5. Conclusion

such as Variational PCA [Bis99] might offer better relational information. Additionally,
besides manifold optimization of rotation matrices, we also plan to constrain the shape
bases to orthonormal bases and consequently solve them on manifold.

As a future work, the current sparse face model can be densified with mapping or inter-
polation tools [GMDlTGZ10]. Then the appearance model [TH04] can be directly applied
to the statistical estimation framework. Textured meshes with low-order deformation
[SPIF07] is also applicable.
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