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1 Introduction

In human-human interaction, it is advantageous to recognize one’s counterpart because
this is the key to access available background knowledge about this person, originating
from previous encounters. It can comprise a person’s preferences and dislikes, way of
thinking, credibility or reliability. The knowledge about each other affects how people
treat each other and to what extent they are able to estimate each other’s intentions.
A barkeeper who serves the customer’s favorite drink as soon as he sits down, a shop
which chalks up for its regular customers or a friend who is able to greet one by name
are simple examples. Many more are imaginable as everybody experiences similar
situations every day.

Ordinary computer systems are not able to do this. While it is easy for them to store
background knowledge, the user has to communicate his identity actively in order to
allow the computer to access this knowledge. Biometric systems endow computers
with the required perceptual abilities to recognize the user autonomously. In addition to
widely used and developed security applications like video surveillance and access con-
trol, this opens up many new possibilities. Smart cars, that recognize legitimate drivers
and adjust the settings of seat, mirror and radio station accordingly, are as imaginable as
smart homes, that route phone calls automatically to the current location of the desired
recipient. When implementing such systems, it is crucial that the complexity the user
is confronted with does not practically destroy the benefits and comfort the system was
designed to provide.

The goal of building smart environments is to give a benefit to the user without re-
stricting him or her. The person must be allowed to move freely and naturally without
the need to express certain behavior patterns to suit the system. Computer systems in
such environments “have to fit naturally within the pattern of normal human interac-
tions” (Pentland and Choudhury, 2000, p. 55). Otherwise, it will be restricted to a
technology-affine group of people since general acceptance will be low.

Identification of a user can be achieved by exploiting different cues. Depending on
the nature of the cue, more or less interaction on part of the user is necessary. For
fingerprint identification, the user needs to touch a sensor, for speech recognition, the
user needs to provide speech samples by uttering one or more words. The third popular
approach to biometric identification is the use of facial features. Alongside speech, it
is a very natural approach and mimics human recognition. Even though current face
identification systems often still require interaction — look at the camera — or at least
a certain behavior pattern — do not tilt your head — as well, the nature of the cue
inherently allows for unobtrusive, interaction-free recognition, as the visibility of the
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1 Introduction

face does not need any specific action. On the contrary, specific action is necessary to
hide it.

This work is part of CHIL - Computers in the Human Interaction Loop, an Integrated
Project under the Sixth Framework Programme of the European Commission (Waibel
et al., 2004). The goal of this project is to support human-human interaction by creating
perceptual computer systems that release the human of the need to explicitly interact
with the system in order to use a certain service. Requiring minimum human attention
to provide maximum service, these systems are designed to be helpful assistants that
allow humans to concentrate on interactions among themselves. To build such systems
and offer personalized and context-dependent services, it is crucial to know the identity
of the participants. This work presents an approach to unobtrusive person identification
by face recognition together with the arising challenges.

In the following, this chapter will first explain the objectives for the development
of this system in Section 1.1 before an overview of already existing face recognition
systems will be given in Section 1.2. Subsequently, the scenario in which the developed
system is evaluated is introduced in Section 1.3. The design of the system is outlined
in Section 1.4. Finally, Section 1.5 summarizes the scientific contribution made by this
work.

1.1 Motivation

The goal of this work is to build a real-time capable face recognition system (FRS) for
unconstrained environments. It is supposed to handle robustly real-life situations with
all the challenges they bring along that make the task harder.

The key difficulties in real-world applications arise from

Unobtrusive Recognition The face recognition system is supposed to work in the
background in an unobtrusive manner. The people to be recognized are not to
be disturbed or interrupted in their actions by the presence of the computer vi-
sion system. While the inconvenience emerging from a necessity to interact with
the system, e. g., to look straight into the camera for some time, would still be
acceptable for security scenarios in areas with restricted access, it is annoying in
environments like smart homes, where the system might be passed several times
over a short period of time. A major share of the following problems arise from
this central goal and challenge.

Changing illumination While it is already laborious and energy-consuming to estab-
lish constant illumination in window-less rooms, it gets practically impossible if
daylight is involved. Daylight leads to very different illumination depending on
the time of day, time of year and weather conditions. However, in spite of this
hardly controllable natural influences, even the artificial light sources are with-
drawn from the system’s control if unobtrusive recognition as postulated above
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1 Introduction

is to be implemented. Since the user, i. e., the person to be recognized, is not
supposed to be restrained by the system, he is free to switch on and off any light
sources that might be available. This leads to a wide variety of illumination con-
figurations in terms of light intensity, direction and even color.

Varying appearance Every recognition system that is deployed in a real-world setting
is necessarily trained on a very small amount of data compared to the quantity
encountered during a long period of operation. In terms of a face recognition
system, the problem arises that people can change their appearance on a daily
basis. They may or may not wear different kinds of glasses, or facial hair can
change the aspect of large areas of the face. Parts of the face may be occluded by
clothing or accessories — like sunglasses, scarves, hats or caps — or simply by
the person’s hand because he or she needs to yawn or cough. Generally, the fa-
cial expressions change when the person is laughing, talking, shouting or crying.
Since it is impossible to capture every kind of variation within the training data,
the system itself needs to be designed general enough to make up for them.

Pose variations In addition to not to look the same all the time, people do not stiffly
hold their head in a fixed position, facing the camera upright, either. Following
the postulated unobtrusiveness, people are free to move. They might turn away
from the camera or rotate the head arbitrarily.

Numerous face recognition systems have been developed over the past years. Starting
with recognition of frontal faces under fixed conditions (Belhumeur et al., 1997; Turk
and Pentland, 1991), more recent systems approached the above mentioned difficulties
arising from real-world data as well. Unfortunately, these systems generally work under
fully controlled conditions (Georghiades et al., 2001; Phillips et al., 2003; Wang et al.,
2004). The subject is usually aware of the camera and actively cooperating with the
FRS, displaying a fixed set of different facial expressions if necessary and rotate the
head at certain angles. If varying lighting conditions apply, the single light source is
positioned as well at fixed angles like left, right and in front of the person. In occluded
images, usually the same part of all faces is covered in the same or a similar manner
(e. g., Martinez and Benavente, 1998). As detailed above, this does not reflect a realistic
situation. The FRS developed in this work takes the combination of these issues into
account in order to process real-world data.

1.2 Previous work

This section gives an overview of previously developed face recognition systems. The
first part concentrates on methods for face detection, which is a vital step preceding
recognition. Afterwards, different approaches to face recognition are presented, where
the focus is put on video-based methods.
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No numbers are reported for the results, as testing conditions and evaluation concepts
vary largely, so that the results would not be comparable in many cases. As detailed
explanation of the experimental setup is beyond the scope of this work, the reader is
referred to the original publications.

1.2.1 Face detection

Face detection has attracted a lot of research effort in the past, as it is the key to more so-
phisticated systems that allow face tracking or recognition. A large variety of different
methods has been developed which can be divided into two categories: feature-based
and image-based (Hjelmas and Lee, 2001).

Image-based approaches directly evaluate pixel values in some way, e. g., by feed-
ing them into a neural network. Rowley et al. (1998) used a set of retinally connected
neural networks to classify input samples as face or non-face. In order to compensate
for translation, a window is shifted pixelwise over the image and each location is evalu-
ated. To account for scale variations, this approach is applied to a pyramid of stepwise
downsized versions of the input image. Both the sliding window and the scaling lead
to a high computational effort.

As this is generally a concern for image-based approaches, it applies as well to the
work of Menser and Müller (1999), which is based on the eigenfaces approach in-
troduced by Turk and Pentland (1991) for face detection and recognition (see below,
Section 1.2.2). Every subwindow is projected onto the face space by means of prin-
cipal component analysis (PCA). Instead of processing the original image, Menser
and Müller use a skin probability image to increase robustness towards complex back-
grounds and illumination. In addition to the residual reconstruction error, the distance
to the mean face in the face space is used as a measure for “faceness” which increases
the robustness in uniform backgrounds.

Feature-based methods exploit certain characteristics of a face. These can be low-
level features like edges, skin color or motion, the position of eyes, nose and mouth or
the geometric relations between them, for example.

One representative of this class is the component-based approach by Heisele et al.
(2001b), which is applied to synthetic face images derived from textured 3-dimensional
head models. The system uses 15 support vector machines (SVM), one for each of
the 14 components, and one to classify their geometric configuration. Each compo-
nent is selected by growing a rectangular region around a seed point as long as the
upper bound on the expected probability of error of the corresponding SVM decreases.
This approach yields a discriminating set of components and is not restricted to faces.
Heisele et al. report an increased performance over a holistic approach, because the
single components are less affected by in- and out-of-plane rotations.

Papageorgiou et al. (1998) introduced a general framework for object detection based
on an overcomplete dictionary of three types of Haar wavelets. These are used to com-
pute differences between image intensities in neighboring regions of the image. A sta-
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tistical analysis of the normalized resulting values allowed them to reduce the number
of features, that are necessary for a successful detection, by nearly two orders of mag-
nitude. Classification of pre-aligned faces is done with SVMs. During training, false
detections in non-object samples are iteratively used to refine the model until a satis-
fying decision surface is found. Selection of these problematic samples for training
overcomes the problem that the non-object class is extremely large and heterogeneous
compared to the object class. A similar experiment was conducted for pedestrian detec-
tion in which an extension incorporating motion information was able to improve the
results.

The idea of using Haar basis functions to compute intensity differences was taken
up by Viola and Jones (2001) to build a real-time capable face detection system. They
extended the set of Haar-like features and introduced a data structure called integral im-
age, which allows efficient computation. Thus, faces of different sizes can be detected
by scaling the features instead of the image, as done by Papageorgiou et al., which
results in a speed-up. Viola and Jones used a modified AdaBoost algorithm to select
relevant features. These are arranged in a classifier cascade to further speed up process-
ing. In analogy to the training method used by Papageorgiou et al., Viola and Jones use
false detections of one classifier to train its successor in the cascade. As this approach
is widely employed throughout this work, a more detailed explanation can be found in
Section 2.1. Later, Jones and Viola (2003) added a decision tree for pose estimation so
that an appropriate cascade could be selected to allow for multi-view face detection.

Since a detailed survey of the wide variety of face detection techniques is beyond
the scope of this work, the interested reader is referred to the work of Hjelmas and Lee
(2001) and Yang et al. (2002).

1.2.2 Face recognition

Over the last years, video-based face recognition approaches have come more and more
into focus of research. They can help to overcome the difficulties arising from changing
illumination, pose, expression and temporary occlusion which cannot be resolved by
frames-based approaches.

The most popular holistic frame-based approach to face recognition is called eigen-
faces and was introduced by Turk and Pentland (1991). It describes faces as a linear
combination of principal components, i. e., the eigenvectors of the covariance matrix of
the training set that are associated to the largest eigenvalues. In face recognition con-
text, these are generally referred to as eigenfaces. The distance of a test sample from
feature space (DFFS, Moghaddam and Pentland, 1995), i. e., the energy difference be-
tween the sample and its projection, can be used to determine whether it represents a
face. If so, the class with the smallest distance is selected under the restriction that this
distance is not too large. Otherwise, the sample is classified as unknown. This property
can be used to implement automatic learning of new faces. The holistic approach, how-
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ever, is very sensitive to occlusion and other local variations because they can affect the
whole feature vector (Ekenel and Stiefelhagen, 2006a).

Ekenel and Stiefelhagen (2005) choose a local appearance-based approach in order
to be independent from the detection of salient facial features and less affected by local
variations. This is realized using the discrete cosine transform which allows efficient
dimensionality reduction and computation. In order to account for local variations in
the image, the transform is applied to local blocks. The transformation results of all
blocks are fused on feature and decision level, where the former is found to perform
slightly superior. The local model outperforms the global version of the approach as
well as other holistic models like principal component (PCA), independent component
(ICA) and linear discriminant(LDA) analysis. Further details are given in Sections 2.3,
3.3 and 3.4 because this approach is fundamental in this work.

Zhou et al. (2003) are concerned with face recognition in video sequences rather than
still images. Instead of applying the common two-step approach of tracking followed
by recognition, they develop a single-step approach which is able to do both simulta-
neously. To achieve this, the underlying probabilistic framework incorporates a motion
equation to model a person’s movement, an identity equation to model the development
of this person’s identity and an observation equation to relate motion and identity to
each other. Sequence importance sampling (SIS) is used to propagate the joint pos-
terior probability distribution of identity and motion over time. Zhou et al. present
results in two categories. In one, the system is trained on one single still image per
person, whereas in the second, an exemplar-based approach is used to train the system
with video data.

Since head poses and facial expressions change continuously rather than discretely,
Lee et al. (2003) represent the appearance of a person by the means of manifolds. Since
a person’s appearance manifold is non-linear and complex, it is divided into disjoint
pose manifolds which are connected by transition probabilities. Applying PCA to ex-
emplars, which are extracted from training videos with k-means clustering, yields an
affine plane which approximates the pose manifolds. The transition probabilities are
learned from the temporal dependencies between pose manifolds in training sequences.
A Bayesian probabilistic framework estimates the closest manifold to a given sequence
of test samples. An iteratively computed weight mask allows to handle partial occlu-
sions.

In order to model person-specific appearance and dynamics, Liu and Chen (2003)
train individual hidden Markov models (HMM) on eigenface image sequences. During
classification, the identity of a person is determined in maximum-likelihood manner. If
the likelihood difference between the top two candidates is larger than a certain thresh-
old, the sequence is used to adapt the best candidate’s model accordingly.

Arandjelovic and Zisserman (2005) developed a system to retrieve faces in feature-
length movies based on single or multiple query images. This implies a large variety of
pose and illumination changes as well as complex background and partial occlusions.
SVM-based mouth and eye detectors are used in conjunction with a gradient-based face
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boundary detector to perform automatic face registration. To suppress coarse variations
of ambient illumination, the registered face image is band-pass filtered, resulting in a
so-called signature image. Classification is based on a modified Euclidean distance
between the query’s and film characters’ signature images. The modification of the
distance measure increases the robustness against partial occlusions.

Using feature films as input data as well, Sivic et al. (2005) create a person retrieval
system. Single faces are represented with scale invariant (SIFT) descriptors of facial
features. Face detections within the same shot are automatically grouped into face-
tracks, which are represented by a histogram over the corresponding faces. A feature-
based vector quantization allows to build meaningful histograms. A query consists of
a single face selected in one of the scenes. The system automatically extends the query
to all faces in that scene to compute the face-track. A chi-square goodness-of-fit test is
then used to retrieve all matching face-tracks and, thus, faces.

Face recognition systems that are to be deployed in a real-life scenario, usually en-
counter the problem that they are confronted with unknown people. To reject those,
Li and Wechsler (2005) make use of transduction, an inference method that derives
the class of a test sample directly from a set of training samples, instead of trying to
induce some generalizing classification function over the training set. To reject a test
sample, its k-nearest neighbors are used to derive a distribution of credibility values
for false classifications. Subsequently, the credibility of the test sample is computed
by iteratively assigning it to every class in the k-neighborhood. If the highest achieved
credibility does not exceed a certain level, defined by the previously computed distri-
bution, the face is rejected as “unknown”. Otherwise, it is classified accordingly.

As for face detection, a detailed survey of available face recognition techniques, es-
pecially of frame-based approaches, is beyond the scope of this work, the reader is
referred to the work of Zhao et al. (2003).

1.3 Scenario

The face recognition system developed in this work is deployed at the entrance door to
a seminar room. As can be seen in Figure 1.1, the camera is located opposite the door
with a distance of several meters. Individuals are recognized when they enter the room.
Depending on their intention, they turn sideways to get to the seminar area or collect
a print-out, walk straight through to the next room or just stand in the door frame for
some time before they leave. Different light sources (fluorescent lamps, daylight lamps
and two smaller windows) cause varying illumination. The exact configuration is in full
control of the people using the room and no specific lighting policy is enforced.

This setup accounts for the broad variety of changing conditions caused by real-world
data. The camera position ensures unobtrusive recognition of people, as it allows them
to enter the room as usual. Nevertheless, the direction of the camera enables the FRS
to generally capture at least some frontal or close-to-frontal views of a person which
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Figure 1.1: Layout of the seminar room. The camera is facing the door from a distance of
several meters, capturing a part of the corridor as well.

are necessary for successful recognition. Figure 1.2 shows some examples of the vary-
ing recording conditions encountered during the evaluation of the system. The system
is currently restricted to detect and recognize single individuals rather than groups of
people.

1.4 System overview

This section will give an overview of the system and the general ideas to solve the
problems arising from real-world data. A detailed description of the methodology is
given in Chapter 3.

As clarified above, the recognition of faces under real-life conditions grants the user
many degrees of freedom, which in turn make the classification problem harder. In
order to achieve a real-world deployable system, these difficulties need to be tackled.
The solution developed in this work is characterized by two key techniques:

Local appearance-based model A local appearance-based model — in contrast to
holistic approaches like eigenfaces as introduced by Turk and Pentland (1991) —
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Figure 1.2: Exemplary recognition situations showing a variety of different lighting, pose and
occlusion conditions. No individual explicitly looks into the camera.
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Figure 1.3: Overview of the recognition system.

processes the image information locally in order to reduce impairments caused
by occlusion and variations of illumination and expression. Based on research
by Ekenel and Stiefelhagen (2005), local feature vectors are computed using the
block-based discrete cosine transform. These local features are then fused to al-
low classification of the image. The locality of the model allows for individual
processing of image regions, e. g., in terms of illumination normalization, and
control of how much each block contributes to the final classification. The local
model still takes spatial dependencies between blocks into account, but in con-
trast to component-based approaches, recognition using local appearance-based
models does not rely on the detection of specific features prior to classification.

Video-based recognition Taking into account that a person stays in the camera’s field
of view for some time when entering the room, it is reasonable to use all avail-
able views of this person for recognition purposes instead of a single one, even
if this single frame is considered to be the ”best” one by some quality measure.
The plus of data being available for evaluation is able to compensate for poor
quality frames. It makes classification more robust because the combination of
several frames can lead to confident decisions, even if every single frame is am-
biguous. Additionally, it leads to better quality input data as video-based image
processing allows to use tracking techniques. These can be employed to track
registration-specific cues and, as a consequence, make alignment, and therefore
feature extraction, more robust since in-plane pose variations can be handled.

To understand how these central ideas are integrated into the developed system, the
process from data acquisition to classification is outlined in the following. An overview
of this process is depicted in Figure 1.3.

In the given scenario, appearing faces are comparatively small with respect to the
input image. To avoid unnecessary processing of non-relevant data, the image data
needs to be reduced to ”interesting” areas, i. e., areas which are likely to contain a face.
The door scenario would allow to concentrate on the center region of the image, as
a face should appear here when somebody enters the room. This approach, however,
would be specific to this scenario. In a more general approach, skin color information
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is used to determine so called regions of interest (ROI). With an appropriate skin color
model, these face candidates can be quickly detected. The reduced amount of data
leaves more computational resources to the actual recognition task and allows real-time
processing. In this work, an adaptive histogram-based skin color model, as explained
in Section 3.1, is used to segment skin-colored areas in the image.

Subsequently, the detected face candidates are inspected whether they actually do
represent a face or not. This is achieved based on the face detection framework in-
troduced by Viola and Jones (2001) which uses Haar cascade classifiers. Using these
classifiers, the ROIs are checked for a face as well as for two eyes. The eye positions
are then tracked over time with a Kalman filter to compensate for failures of the eye
detector. It is important to get robust estimates of the eye positions because these are
exploited to extract and normalize the face image to a fixed orientation and scale (see
Section 3.2).

If face candidates are confirmed by the alignment process, this information is used for
subsequent frames in two ways. First, the color information of a face is used to adapt
the skin color model to the current individual in order to improve skin segmentation
in the next frames. Second, the location of the face is exploited to reduce the search
area in the following frame to the region surrounding it. This is another step towards a
real-time capable system.

The aligned face is divided into blocks to account for local feature extraction which
is based on the discrete cosine transform (DCT). DCT has been especially chosen for
its compact data representation, data-independency and computational efficiency.

The resulting frame-based feature vectors are then classified using k-nearest neigh-
bors and Gaussian mixture models. Several temporal fusion schemes that will be intro-
duced in Chapter 3 are evaluated in Chapter 4 in order to assess their performance.

As criticized above, the major part of recent face recognition research is still based on
data which is collected in a controlled environment, even if it already includes certain
variations of the recording conditions. Alongside this, publicly available face databases,
like the FRGC (Phillips et al., 2005) and AR (Martinez and Benavente, 1998) face
databases, are recorded under very controlled environmental conditions with the indi-
vidual being aware of the camera and of being recorded. The discrete nature of the
captured variations does not reflect real-life situations with continuous changes. The
difference can be seen in Figure 3.5 in Chapter 3 which contrasts face images from
these databases with some obtained with the proposed system. As a consequence, these
databases cannot provide data to evaluate the developed system. This leads to the ne-
cessity of collecting one’s own data. Using a simplified version of the system outlined
above called face recorder, this is easily achieved. In the reduced system in Figure 1.4,
a successful detection of a face triggers a recording instead of the feature extraction and
the classification process. The recording continues until the person leaves the camera’s
field of view. Like this, the system can run unattendedly and automatically collect sep-
arate video sequences of individuals entering the room over an arbitrary period of time
until the resulting video database captures a sufficient number of variations and people.

11



1 Introduction

Figure 1.4: Overview of the data collection system.

Manual segmentation of a continuously recorded video stream would be tedious and far
exceed any reasonable amount of time and memory, especially since the door scenario
implies long periods of time in which nothing happens.

Concluding this overview, a remark about terminology is necessary. The term face
detection can be interpreted in two ways, technically and functionally. The former
refers to the low level application of Haar classifier cascades to detect a face pattern
rather than an eye pattern. The latter, in contrast, corresponds to a more abstract view,
referring to the confirmation of a face candidate by means of Haar-feature-based eye
and face detection. In most parts of this work, the functional interpretation is used. Ex-
ceptions ensue from context if a discrimination between the different classifier cascades
is necessary.

1.5 Contribution

The contribution made by this work comprises two major aspects:

Fully automatic data collection of real-life data The system is able to automatically
record segmented video data of people entering a room. This allows to record data
continuously over a long period of time rather than during designated recording
sessions only. People behave naturally, since they are not required to interact with
the recording system in any special way. As a consequence, the system is able to
capture continuous real-life variations of illumination, pose and appearance of a
variable number of subjects. This is a major contrast to existing public databases,
which are recorded under controlled conditions and contain only a pre-defined set
of discrete variations. From the collected data, training samples can be extracted
in an unsupervised manner.

Real-time face recognition in real-life video data Due to the locality of the model
and the exploitation of temporal dependencies between frames, the developed
system robustly handles strong variations in the data. The underlying models are
easily extendable or reducible to recognize more or less people without the neces-
sity to retrain everybody else. The system successfully extends the frame-based
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approach by Ekenel and Stiefelhagen (2005) to video-based data. Furthermore, it
adds automatic model generation with varying granularity for each person caused
by the heterogeneity of the training data, which contains largely different num-
bers of samples per person.
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2 Basic Principles

This chapter will introduce the theoretical foundations of the major techniques which
are employed within this work. Implementational details are omitted, as they are pre-
sented in Chapter 3.

2.1 Haar cascade classifiers

Haar cascade classifiers represent a framework for rapid object detection in images as
proposed by Viola and Jones (2001). This framework is based on a set of Haar-like
rectangular features which can be efficiently computed using an image representation
called integral image. A cascaded architecture trained with the AdaBoost boosting
algorithm (Freund and Schapire, 1997) allows rapid evaluation of these features in order
to detect learned objects or, in this case, faces and eyes.

2.1.1 Haar-like features

As mentioned above, the detection framework makes use of a large number of rectan-
gular features which are reminiscent of Haar basis functions. Some examples of these
features are depicted in Figure 2.1.

Figure 2.1: Examples of Haar-like features. Their values represent the intensity differences
between the black and the white areas.

Each feature is basically computed as an intensity difference between adjacent re-
gions of an image. Although not being invariant to rotation, a single feature can easily
be evaluated at an arbitrary location or scale. This is made possible by representing the
image as an integral image.
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(a) (b)

Figure 2.2: Integral image. (a) The integral at (x,y) is the sum of all pixels up to (x,y) in
the original image. (b) The area of rectangle D results to ii(A+B+C +D)− ii(A+C)−
ii(A+B)+ ii(A). Each ii(·) can be determined with a single array reference (taken from: Viola

and Jones, 2001).

2.1.2 Integral image

Similar to an integral in mathematics, pixel ii(x,y) in the integral image represents the
sum of the pixels above and left of pixel i(x,y) in the original image, including i(x,y)
(see Figure 2.2 (a)). Therefore, the integral image is defined as

ii(x,y) = ∑
x′≤x
y′≤y

i(x′,y′) (2.1)

with 0 ≤ x < X and 0 ≤ y < Y , X and Y being the width and height of the original
image, respectively. Since at each location (x,y) all pixels above and left of it have to be
accessed to compute ii(x,y), this basic formulation is computationally very expensive.
Taking into account that ii(x−1,y) already contains the sum up to (x−1,y), a pair of
recurrences

s(x,y) = s(x,y−1)+ i(x,y) with s(x,−1) = 0 (2.2)
ii(x,y) = ii(x−1,y)+ s(x,y) with ii(−1,y) = 0 (2.3)

allows to compute the integral image efficiently with one pass over the original data.
The term s(x,y) denotes the cumulative sum of the elements in column x up to row y.

In the integral image, the integral of an arbitrary rectangle can be computed with a
maximum of four array references, one for each vertex of the rectangle. Please refer
to Figure 2.2 (b) for an example. Looking at the example features in Figure 2.1, it is
obvious that the most complex one, the center one, can be determined with as few as
nine accesses to the integral image. Hence, based on this image representation, the
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Figure 2.3: Structure of the classifier cascade. “Yes” and “no” denote if the sub-window
successfully passed the previous stage (Cf. Viola and Jones, 2001).

Haar-like features described above can be evaluated at any location or scale in constant
time. In comparison, computation of a feature of size X ′×Y ′ in the original image
requires X ′ ·Y ′ accesses.

2.1.3 Classifier training

Even though any single feature can be computed very rapidly, the exhaustive set of
possible features in an image is very large. In the work of Viola and Jones (2001),
it consists of approximately 160,000 features per 24× 24 pixel sub-window. Since
the input image is scanned with a sliding window at different scales, evaluation of the
full feature set leads to a very high computational effort. To reduce the number of
features and to obtain an efficient detection algorithm, the most discriminant ones are
selected using a modified version of the AdaBoost boosting algorithm by Freund and
Schapire (1997). The thresholded single features are considered as weak learners which
are then weighted and combined to form a stronger classifier, which takes the form of
a perceptron. Within this classifier, discriminating features, i. e., good classification
functions, obtain a high weight, whereas less differencing features and therefore ones
with poor classification performance get a low weight. In the framework by Viola and
Jones, AdaBoost is used to greedily select a small number of distinctive features from
the vast set of available ones.

It is obvious that the number of features in the strong classifier directly affects com-
putation time as well as the correct and false detection rates. A smaller number of fea-
tures leads to a faster classifier with fewer correct and more false detections. In order
to keep the number of evaluated features small but still obtain good detection results,
a cascade of several of the strong classifiers outlined above is constructed. A cascade
is essentially a degenerate decision tree as depicted in Figure 2.3. Each stage hands on
its detections — both correct and false — to its successor, which is trained to discrim-
inate these more difficult cases using additional features. Negative sub-windows are
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(a) (b)

Figure 2.4: Two out of four features evaluated in the first stage of the face detection cascade
used in this work. Both features embody the observation that the forehead and cheeks of a

person are usually brighter than the eye region because the eyes are located further aback.

discarded immediately. A sub-window which successfully passes the whole cascade is
considered a correct detection.

Consequently, the entire set of selected features has only to be evaluated for the small
number of positive sub-windows — compared to the overall number of sub-windows
in an image. The majority of negative sub-windows is discarded early in the detection
process using only a small subset of the selected features. Figure 2.4 shows two sample
features of the four features in the first stage of the face detector that was used in this
work.

To train this system, all sub-windows that pass one stage are used as training samples
for the next one. This stage is then trained to discriminate these more difficult cases
using a different set of features. Each strong classifier has to solve a harder problem
than its predecessor. For each stage, limits for acceptable correct and false detection
rates are defined. Features are added to these classifiers until these requirements are
met. If the overall detection rates are not yet satisfying, another classifier is trained and
added to the cascade. Given its sequential structure, the correct detection rate D and the
false detection rate F of the final cascade with K stages can be computed using

D =
K

∏
i=1

di (2.4)

F =
K

∏
i=1

fi (2.5)

where di is the correct detection rate and fi is the false accept rate of classifier i. These
rates are computed on the samples that are passed on from the classifier i− 1, where
i = 0 is the image itself and therefore yields all possible sub-windows.

The power of this detection framework is stressed by the fact that Viola and Jones
were able to reject 50 % of the negative sub-windows while detecting 100 % of the faces
with as few as two features.
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2.2 Kalman filter

The Kalman filter (KF) is a linear state estimator and was initially introduced by Kalman
(1960). Since then, the KF and several variants like the Extended Kalman filter for non-
linear estimation are commonly used in tracking tasks. A detailed introduction to these
topics can be found in (Bar-Shalom and Fortmann, 1988; Jazwinski, 1970; Welch and
Bishop, 2001).

In this work, the system contents itself with the basic implementation of the Kalman
filter for linear prediction. It is based on a discrete-time dynamic system which is
described by a process model

x(t) = A(t) · x(t−1)+B(t) ·u(t)+ v(t) (2.6)

and an observation model
z(t) = H(t) · x(t)+w(t) (2.7)

The system state at time t is denoted by x(t). A(t) and H(t) stand for the known state
transition and measurement matrices, while matrix B(t) allows to model the influence
of some optional control input u(t). The vectors v(t) and w(t) represent the process
noise and the observation or measurement noise, respectively. They are assumed to be
independent, white Gaussian random processes with zero-mean and covariances Q(t)
and R(t), respectively.

Equations (2.6) and (2.7) allow to infer the usually not directly observable current
system state x(t) from a sequence of measurements {z(t)}t . The recursivity of Equa-
tion (2.6) is a key property of the Kalman filter, as it avoids the need to process all
measurements Zt = {z(i)}ti=0 in every time step.

When estimating the system state, let x̂(t|Zt−1) denote the a priori or predicted state
estimate at time t taking into account the measurements Zt−1 = {z(i)}t−1

i=0 up to time
t−1, and x̂(t|Zt) the a posteriori or filtered state estimate derived from all measure-
ments Zt . The predicted state estimate is given by

x̂(t|Zt−1) = A(t)x̂(t−1|Zt−1)+B(t) ·u(t) (2.8)

and the resulting state prediction error is

x̃(t|Zt−1) = x(t)− x̂(t|Zt−1) (2.9)

From that, the state prediction error covariance can be computed as

P(t|Zt−1) = E[x̃(t|Zt−1)x̃T (t|Zt−1)]

= A(t)P(t−1|Zt−1)AT (t)+Q(t)
(2.10)

Concerning the actual observations, the predicted measurement

ẑ(t) = H(t)x̂(t|Zt−1) (2.11)
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allows to compute the innovation or measurement residual

α(t) = z̃(t) = z(t)− ẑ(t) (2.12)

and its covariance

S(t) = E[z̃(t)z̃T (t)]

= H(t)P(t|Zt−1)HT (t)+R(t)
(2.13)

The innovation describes the difference between the predicted measurement and the
actual observation. Together with the Kalman gain, which is defined as

K(t) = P(t|Zt−1)HT (t)S−1(t) (2.14)

the filtered state estimate can be updated following the state update equation

x̂(t|Zt) = x̂(t|Zt−1)+K(t)α(t) (2.15)

and the filtered state error covariance according to the covariance update equation

P(t|Zt) = [I−K(t)H(t)]P(t|Zt−1) (2.16)

Since a Kalman filter uses measurements to correct its state estimates, it can be
thought of as a predictor-corrector algorithm as it is commonly used to numerically
integrate differential equations (Welch and Bishop, 2001). The set of equations con-
cerning the prediction of the current state, and therefore the next measurement, is made
up of Equations (2.8) and (2.10). After the actual observation has been made, the cor-
rection step leads to an update of the filter state according to this observation using the
measurement update equations (2.12),(2.14),(2.15) and (2.16). Figure 2.5 summarizes
this process.

2.3 Discrete cosine transform

High-dimensional data can pose many challenges. Analysis of images of size X ×Y
on pixel level, for example, would result in a feature space with X ·Y dimensions.
This grows easily into thousands of dimensions, which makes it very difficult to model
the data since many traditional statistical methods break down due to the enormous
number of variables. Furthermore, larger feature vectors both require more memory
and increase processing time.

The good news is that, most of the time, not all dimensions are necessary in order to
build a model which captures the underlying characteristics of the data. In fact, those
can often be suitably represented using only a small fraction of the initial number of
dimensions. Unfortunately, the essential dimensions are usually not axially parallel to
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Figure 2.5: Overview of the Kalman filter as a predictor-corrector algorithm (Cf. Welch and
Bishop, 2001).

the dimensions of the original data, as the variables can be highly correlated. Therefore,
it is crucial to move the data to a different representation which is more appropriate in
these terms.

One of the methods to achieve this is the discrete cosine transform (DCT). It is widely
used in signal processing, especially in image processing where it is well-known as the
basis of the widespread JPEG still image compression standard (Wallace, 1991). It in-
terprets the data as superimposition of cosine oscillations and transforms it to frequency
domain. Since this work deals with computer vision problems, the input signal is con-
sidered to be 2-dimensional image data. For a 2-dimensional signal f (x,y), the DCT is
defined as

F(u,v) = C(u)C(v)
2
X

X−1

∑
x=0

Y−1

∑
y=0

f (x,y)cos
(

πu(2x+1)
2X

)
cos

(
πv(2y+1)

2Y

)
(2.17)

where the input is of size X×Y and C(·) is defined as

C(i) =

{
1√
2

i = 0

1 otherwise
(2.18)

The cosine basis functions connected to the resulting coefficients are depicted in
Figure 2.6. Coefficient (0,0) represents the average signal, i. e., in case of image pro-
cessing, the average gray value of the image. It is called DC coefficient by analogy with
direct current in electricity. Similarly, the other coefficients are called AC by analogy
with alternating current.

The DCT has several advantages that makes its use appealing:

Orthonormality The DCT is orthonormal and therefore lossless. This way, one has full
control which part of the signal is to be discarded to reduce the dimensionality.
No information is inherently lost by the transformation itself. As a consequence,
it is fully invertible.
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Figure 2.6: Cosine basis functions of the discrete cosine transform for input size 8× 8. The
frequency of the basis functions increases from top left (0,0) to bottom right (8,8).
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1 3 1 -1 -1 -1 0 0

(a) (b)

Figure 2.7: Discrete cosine transform of an 8× 8 pixels image patch. The coefficients
represent the basis functions depicted in Figure 2.6.

Compactness of representation The DCT approximates the Karhunen-Loève trans-
form (KLT) which is optimal in terms of representational compactness under
certain conditions (Goyal, 2001). Applying DCT to images generally leads to
high-valued coefficients for low-frequency basis functions and to low-valued co-
efficients for high frequency ones as can be seen in Figure 2.7. Obviously, the
major part of the signal energy is encoded in a small number of low-frequency
coefficients and therefore dimensions. This is the key to reducing the dimen-
sionality of the data. The DCT itself is lossless, as mentioned above, and the
dimensionality of the transformed signal is still the same as the one of the in-
put signal. But high-frequency coefficients can be removed without any or, at
most with negligible effects on the input signal, thus reducing its dimensionality.
Essentially, this low-pass filters the original data. Figure 2.8 visualizes this com-
paction by showing the average energy of all 64 blocks in an input image of size
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Figure 2.8: Average energy of all 64 blocks of the image in Figure 2.7 (a). The DC coefficient
has been removed to allow meaningful scaling.

64×64 pixels. The image has been split into blocks of 8×8 pixels to allow the
DCT to capture enough local detail while still providing sufficient compaction.
This size is based on the JPEG standard.

Data-independency The basis functions of the DCT are independent from the data to
be transformed. This is in contrast to PCA, the discrete realization of the KLT.
Since these transforms rely on the covariance of the data, the basis of the new
vector space has to be computed from a representative training set. This leads to
additional efforts both in terms of computation and construction of the training
set. The DCT always uses the basis functions shown in Figure 2.6 for input of size
8×8. Hence, the representation of already processed data does not change as it
would with PCA, if new and unforeseen data arrived due to a non-representative
training set, which would make recomputation of the basis functions necessary.

In order to represent the coefficients of a 2-dimensional DCT as a 1-dimensional vector,
the transformed signal is scanned following a zig-zag pattern as shown in Figure 2.9.

2.4 K-means clustering

K-means, introduced by MacQueen (1967, see also Tan et al., 2005), is an unsupervised
learning method which partitions the data into k clusters. Each cluster is represented by
its centroid. The approach uses complete and hard clustering, which means that each
sample belongs to exactly one cluster. It is widely used for its simplicity and efficiency.
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Figure 2.9: The DCT coefficients are serialized according to a zig-zag pattern.

2.4.1 Definition

The basic outline of this algorithm is rather simple. To determine cluster association,
an appropriate distance metric d(xn,km) is necessary. Common ones are, for example,
city block (Equation (3.5)) and Euclidean distances. Furthermore, the number of clus-
ters k has to be chosen in advance. This has to be done carefully in order to achieve
meaningful clusters.

The system is initialized by selecting k samples as initial cluster centroids. Depend-
ing on the available knowledge of the data, these can be chosen randomly from the data,
by iteratively selecting data points that lie maximally apart or by running the algorithm
on a small subset with random initialization and using the resulting centroids to cluster
the complete data set.

Afterwards, each point is assigned to the closest centroid according to d(·, ·). Sub-
sequently, the centroids are recomputed as mean vector of all assigned points. These
two steps, assignment and centroid update, are repeated until the cluster means do not
change any more.

2.4.2 Discussion

K-means can be regarded as a hill-climbing algorithm which minimizes an objective
function. For city block and Euclidean distances, these are commonly the sum of er-
rors (SE) and the sum of squared errors (SSE), respectively. They are defined as

SE =
k

∑
i=1

∑
x∈ki

d(x,ki) SSE =
k

∑
i=1

∑
x∈ki

d(x,ki)2 (2.19)

With each iteration, the error decreases but since the error surface is seldom uni-
modal, the algorithm can converge to a local optimum. A common way to reduce the
risk to end up with a locally good result only, is to run the algorithm several times with
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different random initializations of the centroids. Afterwards, the solution yielding the
lowest error is selected.

Several extensions of the original algorithm have been developed. Split and merge
techniques allow for adaptation of the number of clusters and selecting the medoid,
i. e., the data point which is closest to the cluster center, instead of the mean increases
robustness against outliers. Zhang et al. (2000) proposed to use the harmonic mean to
determine soft cluster assignments. As a result, they report a higher robustness against
bad initialization.

2.5 K-nearest neighbors classification

The k-nearest neighbors (KNN) approach is a type of discriminative model.This family
of learning techniques derives the classification result directly from a set of training
samples instead from an abstract model of the characteristics of the data (Tan et al.,
2005).

2.5.1 Nearest neighbor

The elements of the training data are called representatives or prototypes. Represen-
tatives with n features are considered as points in an n-dimensional vector space. A
new sample x ∈ Rn is labeled with the class of the closest representative, the nearest
neighbor, according to a distance metric d(x,y). Although the resulting error will be
greater than the optimal Bayes error rate, it is never more than twice, given an unlimited
number of representatives. The proof is omitted here but can be found in (Duda et al.,
2001, pp. 182–184). Please note that differently scaled features can bias the distance
metric to overemphasize large-valued features at the cost of small-valued ones. This
effect can be mitigated with appropriate normalization techniques.

2.5.2 K-nearest neighbors

If the class of x depends on a single prototype only, it is easily affected by noise. This
can be avoided by selecting k nearest neighbors and derive the classification decision
from their class labels. The simplest way to do this is a majority vote which assigns the
most common among the class labels in question. This leads to equal contribution of
every neighbor, independent of its distance to x and, thus, renders the approach unnec-
essary sensitive to the choice of k. Individual weights wi for every selected prototype
ki, i = 1, . . . ,k, can be derived by taking the actual distance d(x,ki) into account. For
example, using wi = 1

d(x,ki)2 greatly reduces the influence of distant training samples
(Tan et al., 2005).

25



2 Basic Principles

2.6 Gaussian mixture models

A Gaussian mixture model (GMM), also known as mixture of Gaussians, exploits the
fact that any probability distribution can be approximated with a combination of mul-
tivariate normal distributions. This section will introduce the underlying assumptions
and answer the question of how to determine the necessary parameters. Since it is pos-
sible to generate new samples with this kind of model, it is also referred to as generative
model.

2.6.1 Definition

A mixture model is defined as a weighted combination of M probability distributions
Pi(X ;θi) with parameter sets θi, i = 1, . . . ,n, of random variable X . For Gaussian mix-
ture models, these distributions are chosen to be normal with parameters µi and Σi,
where µi denotes the mean and Σi the covariance of Pi.

A GMM of M N-dimensional Gaussian distributions is defined as

P(X = x|Θ) =
M

∑
i=1

αi ·Pi(X = x;θi)

=
M

∑
i=1

αi ·N (X = x; µi,Σi)

=
M

∑
i=1

αi ·
1

(2π)
N
2 |Σi|

1
2

e
1
2 (x−µi)∑

−1(x−µi) (2.20)

where Θ = {α1, . . . ,αM,µ1, . . . ,µM,Σ1, . . . ,ΣM} symbolizes the complete parameter
set of the mixture. |Σi| represents the determinant of the covariance matrix of the re-
spective normal distribution and αi the contribution of Pi(X = x; µi,Σi) to the overall
likelihood P(x = X). The mixing parameters αi must satisfy the condition ∑

M
i=1 αi = 1.

2.6.2 Parameter estimation by expectation-maximization

To determine the free parameters of the GMM, an expectation-maximization (EM) al-
gorithm (Bilmes, 1997; Dempster et al., 1977) is used. Given a set of samples X =
{x1, . . . ,xK} independently drawn from the mixture model (2.20), the EM algorithm es-
timates the set of parameters Θ? of this model that maximizes the likelihood that X
is observed. With the knowledge on which mixture component generated which sam-
ple, this computation would be straightforward since the parameters of each component
could be directly calculated based on the samples it generated. Unfortunately, this data
is not observable when drawing samples from an unknown distribution.

To solve this problem, the EM algorithm iteratively estimates the mixture parameters
based on an initial guess Θg. A common way to determine Θg is to process the samples
in X with the k-means clustering algorithm.
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Each iteration of the algorithm consists of two steps: the Expectation or E-step and
the Maximization or M-step. The algorithm monotonically approximates the maximum-
likelihood and is therefore guaranteed to converge. Since the search space is multi-
modal, the algorithm can converge to a local optimum. To reduce this risk, a reasonable
initialization of Θg is crucial.

Expectation step

The E-step computes the expected value of the hidden parameters αm based on the
current set of parameter estimates Θ and the observed data X .

E[αm,k] = P(X = Pm|xk,Θ) =
αm ·N (X = xk; µm,Σm)

∑
M
j=1 α j ·N (X = xk; µ j,Σ j)

(2.21)

Maximization step

During the M-step, the estimated hidden parameters are used to modify Θ in order to
maximize P(X|Θ). The optimized parameters are computed using

α
new
m =

1
N

K

∑
k=1

E[αm,k] (2.22)

µ
new
m =

∑
K
k=1 xkE[αm,k]

∑
K
k=1 E[αm,k]

(2.23)

Σ
new
m =

∑
K
k=1 E[αm,k](xk−µnew

m )(xk−µnew
m )T

∑
K
k=1 E[αm,k]

(2.24)
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After the main theoretical foundations of this work have been introduced on a general
level, this chapter will focus on their integration into the developed face recognition
system. In addition to that, it will give detailed insight into its functionality and the un-
derlying design decisions. Starting with the skin color segmentation in Section 3.1, the
detection of faces and their registration is covered in Section 3.2. Details about the fea-
ture extraction using the discrete cosine transform are given in Section 3.3. Following
the structure of the system, Section 3.4 then introduces the models used for person clas-
sification. Section 3.5 completes the chapter with a description of the region-of-interest
tracking algorithm.

The implementation of the face recognition system is based on the Open Computer
Vision Library (OpenCV, Intel Corporation, 2006).

3.1 Skin color segmentation

Not only in the given scenario, but in all recognition scenarios involving wider than
close-up views, the face to be recognized is comparatively small with respect to the
image dimensions. In order to avoid unnecessary processing of the background, it is
crucial to concentrate on meaningful areas of the image. In order to identify these, the
image is searched for skin-like colors. This is a reasonable and well-explored approach,
as faces generally expose larger areas of skin depending on already described appear-
ance variations. Skin-color has been intensively used as a low-level cue to detect faces
and people in images since the mid-nineties (e. g., Hunke and Waibel, 1994; Kjeldsen
and Kender, 1996; Raja et al., 1998; Soriano et al., 2000). This is because it is invariant
to orientation and scale and efficient to compute.

3.1.1 Skin color representation

In this study, a histogram-based model is used to represent the skin color distribution.
It is learned from a representative training set of skin samples. This kind of model has
been used in a variety of works (e. g., Jones and Rehg, 2002; Soriano et al., 2000). It
is non-parametric and makes no prior assumption about the actual distribution of skin
colors. Extensive research efforts have been spent on the question which color space
would be the most suitable for this kind of model. Terrillon et al. (2000) compared
nine different skin chrominance models showing that Tint-Saturation-Value (TSL) and
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normalized red-green (normalized-rg) color spaces yielded the best performances in
their face detector setup. The model utilized in this work is located in the normalized-
rg color space because conversion to TSL requires additional effort. It is based on the
widely used RGB color model, in which each pixel is represented by a tuple with one
value for each of the colors red, green and blue. It emerges from the RGB color model
by normalizing each pixel value (R,G,B) over its intensity I = R + G + B, i. e., R = R

I
and G = G

I . Hence, the normalized-rg color space describes proportions of the three
single colors. The information on the blue channel has been dropped. It is redundant
because the normalized values sum up to 1. This reduces the dimensionality of the
problem and leads to a 2-dimensional model histogram. This simpler model can be
computed and applied easily. Since the basic idea of the skin segmentation is to enable
the system to run in real-time, it needs to be as efficient and fast as possible.

The advantage of choosing a chrominance-based color space is a reduced sensitiv-
ity to illumination influences. At the same time, different skin tones, due to different
ethnic backgrounds, get more similar to each other in this representation, forming a
compact cluster in color space. Nevertheless, a study by Shin et al. (2002) suggests that
disregarding the illumination information leads to inferior skin detection rates because
skin and non-skin separation is reduced. The proposed system, however, follows the
conclusion of the survey by Vezhnevets et al. (2003, p. 90) which states “that dropping
luminance is a matter of training data generalization”. Thus, fewer training images
with less variation are necessary to build a reasonable skin representation. Easier train-
ing is traded for a reduced rate of detected skin pixels, but since the skin segmentation
is only a preprocessing step to locate relevant portions of the image, its success does
not depend on the detection of every single skin-like colored pixel but on the detection
of such regions.

The system uses a skin model histogram with 128×128 bins. This reduces compu-
tational requirements and influence by noise compared to larger histogram sizes. At the
same time, it still ensures the necessary resolution of different colors, which degrades
with a decreasing number of histogram bins.

3.1.2 Skin locus

Representing skin in the 2-dimensional normalized-rg color space yields another ad-
vantage. In addition to the fact that all skin tones populate a closed region in color
space, this region is describable using two quadratic functions. The general shape re-
minds of an eye-brow but the actual shape is camera-dependent (Martinkauppi, 2002;
Martinkauppi et al., 2001). According to Störring (2004), this area is referred to as skin
locus. Figure 3.1 visualizes the skin model and skin locus derived from 242 training
samples or, to be more precise, 799,785 training pixels, captured with a Canon VC-C1
camera. The skin locus in Figure 3.1 (b) shows that the camera tends to overemphasize
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Figure 3.1: (a) The skin color distribution as determined from a training set. (b) The skin locus
in normalized-rg color space, described by two functions of quadratic order.

blue at cost of green under certain conditions, resulting in a locus that extends towards
the red axis. A certain color (r,g) is part of the locus if

g > fmin(r) ∧ g < fmax(r) (3.1a)

with

fmin(r) = 6.38r2−4.79r +1.15 (3.1b)

fmax(r) =−3.51r2 +2.53r−0.06 (3.1c)

The boundary functions fmin and fmax are computed by fitting second-order polynomials
of r to the boundary points of the skin distribution, i. e., to the outer-most histogram bins
with non-zero count.

The samples used to build the model are manually cropped from images by selecting
large skin areas in faces in a set of input images. Rectangular sample areas are chosen
to contain as many skin pixels as possible while including as little distracting ones orig-
inating from, for example, glasses, lips or hair. Prominent regions are the forehead or
the central region comprising the nose and both cheeks (see Figure 3.2) but other parts
of the face are included as well to achieve a more general model. Accepting a small
number of distractors into the model does not severely affect the model performance
but greatly eases the skin sample selection.

3.1.3 Segmentation

The segmentation process is based on histogram backprojection, a technique that high-
lights colors in the image which are part of a histogram-based color model (Soriano
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Figure 3.2: Skin samples are chosen to contain many skin colored pixels but no or only few
distractors.

et al., 2000; Swain and Ballard, 1991; Yoo and Oh, 1999). As a first step, the ratio
histogram R is computed from the skin model histogram S and the image histogram I

R(r,g) = min
(

S(r,g)
I(r,g)

,1
)

(3.2)

where r and g denote the histogram bin. Next, R is backprojected onto the original
image, which means, that each pixel i(x,y) is replaced by R(rx,y,gx,y), where rx,y and
gx,y denote the normalized color values of i(x,y). This results in a gray scale image
which can be interpreted as a probability map of skin presence. Bright values denote a
high, dark values a low probability. Backprojecting the ratio histogram instead of the
model histogram itself emphasizes colors that are characteristic for the model. In turn,
colors which are part of the model but which are also common in the background are
weakened.

So, if the background contains as many pixels of a certain color as the model or less,
these pixels will get a skin probability of 1, according to Equation (3.2). If there more
pixels of that color in the background than in the model, skin probability will be lower.
Let ΣS denote the total number of pixels captured in the histogram. Obviously, the
model histogram encodes implicitly the size of the target skin area by ΣS. Therefore, it
is fundamental, that ΣS is normalized to a sensible value. It is observed, that the face
sizes in this scenario range roughly from 45× 45 pixels to 100× 100 pixels. If ΣS is
chosen at the lower bound of this range, small faces will be segmented successfully,
but large faces result in low skin probabilities because the image contains more skin-
colored pixels than the model “allows”, i. e., the denominator exceeds the numerator in
Equation (3.2). Due to the reduced skin probability the pixels are likely to fall below
the segmentation threshold. The larger ΣS is chosen, the more skin-colored pixels can
the image contain before the resulting skin probability is reduced. In addition to allow-
ing larger faces to be segmented, this increases the amount of segmented skin-colored
background as well, if no large face is visible.

As a trade-off, the initial skin model is normalized to a pixel count of 70×70 pixels.
This size allows for reasonable initial segmentation, both for large and small faces. As
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(a) (b)

(c) (d)

Figure 3.3: Skin segmentation process (a) input image (b) backprojection (c) thresholded back-
projection (d) result

soon as a face is detected, the model size is adapted accordingly (see Section 3.1.4 for
details).

The result of the backprojection is shown in Figure 3.3. Yoo and Oh (1999) complain
that the background remains noisy in cluttered environments but this issue is success-
fully addressed with a two-stage thresholding algorithm based on region-growing. The
first stage is a basic binary threshold at level Thigh . The second one is a hysteresis
threshold similar to the one introduced by Canny (1986) for edge detection. It uses
a lower threshold value Tlow than the initial one but it only adds those pixels to the
previously created binary image which are 8-connected to already selected pixels. Ap-
plication of this method to Figure 3.3(b) results in Figure 3.3(c). White areas denote
the result of the first, gray areas the result of the second thresholding step. Figure 3.3(d)
shows the final result after noise removal. The thresholded image is less cluttered, if
the backprojection is smoothed using a Gaussian kernel because this mitigates interlac-
ing effects and noise. Morphological operators have been omitted for speed reasons.
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Possible face candidates are extracted from the thresholded image using a connected
components algorithm (Rosenfeld and Pfaltz, 1966).

The lower threshold Tlow is determined adaptively. It is chosen as the average gray
level of the non-black pixels of the backprojection, i. e., as the mean probability of all
skin-like colored pixels. This approach has a major advantage over a constant value of
Tlow. If the skin of an entering person is only poorly represented by the current model,
due to color, size or both, only a small percentage of the skin pixels will be larger
than Thigh while the majority will have comparatively small values. If a constant Tlow
is chosen too large, these pixels will not be segmented. Choosing Tlow small enough
to successfully segment the badly modeled skin pixels, problems arise when a well-
modeled face is encountered. The skin pixels of such a face will, to a large extent, get
high probabilities of being skin. As a consequence, application of Thigh already leads to
reasonable segmentation. The small Tlow from before will then add unnecessary clutter
to the segmented image.

3.1.4 Model adaptation

The model generated from the skin samples, M0, is very general, both in terms of size
and color distribution. Therefore, it is only used for initial detection and is then adapted
to the current illumination situation and the person’s specific skin color. Whenever a
face is successfully detected in a skin-colored area, the histogram Hface of this area is
used to update the current model Mt .

Mt+1(r,g) = Mt(r,g)+αHface(r,g) (3.3)

with update parameter α and bin indexes r and g. With α = 0.4, this ensures fast
adaptation to every specific case. Due to the Gaussian smoothing, the thresholding
process described above leads to segmentation of non-skin pixels close to skin-colored
ones, e. g., eyes, lips and hair. In order to avoid adaptation to these colors, only colors
inside the skin locus are used to compute Hface. Every time the face detection fails,
Hface is replaced by M0 in Equation (3.3). On the one hand, this simply ensures that
the model is reset after a person left the field of view. On the other hand, it allows to
recover from misadaptations and sudden changes of the illumination situation.

Every time the skin color model is updated, its size is adapted to the size of the
segmented skin region. Since the given scenario aims at people entering the room, the
model size is actually chosen slightly larger. This is done to account for the increasing
scale of the face over time as the person walks towards the camera.

3.2 Eye-based alignment

Since not all skin areas detected in the input image originate necessarily from faces but
as well from arms, hands, the back of a bald head or simply some skin-like colored
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element in the background, the determined skin areas are considered face candidates
that need to be confirmed.

Additionally, actual faces need to be transformed to a normalized orientation and
size. This is necessary because the feature extraction process is not invariant to varia-
tions of translation, rotation and scale.

Both the confirmation and the alignment rely on eye locations. Confirmation is sup-
ported by a face detector. Eyes and face are detected using Haar cascade classifiers.
The processed image regions are slightly enlarged compared to the plain skin areas be-
cause the face detector takes the face outline into account. As stable eye detections
are crucial, eye locations are tracked over consecutive frames using Kalman filters. A
critical part in using such a filter is proper initialization, which is performed as follows.

3.2.1 Eye tracking

Both eyes are tracked separately. The state of each of the two Kalman filters covers
the x- and y-position of one of the eyes, together with its speed of motion in these
directions, vx and vy. The state estimates are supported by measurements of the (x,y)
location of the eyes as determined by eye detectors.

The problem that arises with eye detection is, that an eye detector with a reasonable
detection rate produces quite a few false positives. This is due to the fact that the
intensity distribution of an eye, as captured by the classifier, is rather simple. Therefore,
it can be observed in other parts of the processed area as well, e. g., on curly hair. This
is especially true since the detector is trained with input data which is rotated up to
30 degrees. In order to initialize the Kalman filters, it is necessary to decide on the
“true” detection among all available ones. It is observed that the majority of false
positives only show up in single frames or pairs of frames. Nevertheless, some of them
are detected more consistently whereas eyes are not necessarily detected in every single
frame.

To solve this problem, the approach depicted in Figure 3.4 is implemented (Bar-
Shalom and Fortmann, 1988). The detections of each eye cascade are used to generate
track hypotheses over consecutive frames. Close detections in consecutive frames are
associated to each other to form a track. Tracks that do not get updated with a new
measurement are extrapolated based on previous observations. If several detections are
associated with one track, it gets split into two. If two tracks overlap for several frames,
one of them is discarded. Algorithm 1 gives an overview of the construction of track
hypotheses.

To decide, whether a detection d is close to another, a validation region Vt is defined
(Bar-Shalom and Fortmann, 1988). If d is in this region, it is considered close, other-
wise not. Following the notation in Chapter 2, a degenerate version of the Kalman filter
is used to determine Vt . The last measurement and the derived velocity of the track in
question is assumed to form the last state estimate x̂(t−1). This allows to estimate a de-
tection ẑ(t). Assuming that the distribution of the true measurement z(t) given Z(t−1)
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Figure 3.4: Initialization of the Kalman filters for eye tracking

Algorithm 1 Building track hypotheses
n← 3 . Maximum extrapolation and overlap
for each eye detection d do . Associate detections

for each track t do
if d is close to last detection in t then

associate d with t
if d unassociated then

create new track
for each track t do . Extend and split tracks

if t has newly associated detections then
for each newly associated detection d do

t ′← t . Copy track
extend t ′ with d

else
extrapolate new measurement e
extend t with e

for each track t1 do . Delete bad tracks
if t1 was extrapolated the last n times then

delete t1
continue

for each track t2 do
if t1 and t2 overlap for the last n measurements then

delete t2
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is normal with mean ẑ(t) and variance S(t), an ellipsoidal region around ẑ(t) can be
defined as

Vt(γ) =
{

z : [z− ẑ(t)]T S−1(t)[z− ẑ(t)]≤ γ
}

=
{

z : α
T (t)S−1(t)α(t)≤ γ

} (3.4)

The parameter γ is derived from the chi-square distributed left hand side of the inequal-
ity in Equation (3.4). It describes the probability mass captured by Vt . The chi-square
distribution has two degrees of freedom, which is due to the dimensionality of the mea-
surements. Choosing γ = 16, the probability that the true measurement z(t) will fall
into Vt is larger than 99.9%. As a consequence, only detections within the validation
region are considered as “close” and are associated with the corresponding track.

From the set of tracks, eye pairs are generated with the following constraints:

• Left eye is left of right eye.

• Eye distance is larger than a minimum of 15 pixels.

• Left and right eye move into a similar direction, i. e., the angle between their
tracks is smaller than 30 degrees.

• Left and right eye move at similar speed, i. e., the average speed over the whole
track length does not differ by more than 3 pixels per frame .

At this point, the number of possible eye candidates is already greatly reduced. To ver-
ify the eye pair hypotheses, the image is first rotated, so that the eye positions are on
horizontal line. Next, a face detector is used to confirm or discard the hypothesis. The
rotation is necessary because the face detector is restricted to upright faces. Without
that restriction, the false positive rate would strongly increase as in the eye detector
case. If the face detector is successful, the Kalman filters are initialized accordingly.
As a fallback solution, eye candidates trigger the Kalman filter initialization if they ap-
pear consistently over a long time. On the one hand, this is necessary because the face
detector may still fail on an upright face. On the other hand, it is possible because nor-
mally only the true eye locations are consistently detected over a longer period of time.
The face detector approach is able to succeed within three frames while the fallback
solution is triggered after successful detection of a valid eye pair over 15 frames.

Since the data collection process does not need to register the faces, at least not at
the lowest level of recording video sequences, the face recorder is backed up with a
face detector cascade. In addition to successful eye tracking initialization, a hit of this
detector triggers a recording as well. This accounts for people, whose eyes can not be
detected for some reason, e. g., due to occlusion by hair. Nevertheless, these variations
are included into the database to challenge future systems.
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(a)

(b)

Figure 3.5: Sample face images (a) generated with the proposed system and data and (b) four
images from the AR and three images from FRGC v2.0 face databases for comparison of data

quality (see Section 1.4; Martinez and Benavente, 1998; Phillips et al., 2005)

3.2.2 Registration

Despite the fact that the eye detector is trained to account for some amount of rotation,
it still works best on horizontal eyes, i. e., upright faces. Therefore, the detection results
can be greatly improved if the image is rotated based on the Kalman filter prediction
prior to detection. If eye detection fails nevertheless, the prediction can be used as
substitute. For registration, the face image is rotated to bring the detected or predicted
eye locations into horizontal position. Afterwards, the image is scaled and cropped to a
size of 64×64 pixels, so that the eyes are located at certain coordinates in the resulting
image. Figure 3.5 shows some samples obtained with this method.

3.2.3 Training set augmentation

In order to increase the amount of training data and to reduce the effect of possible reg-
istration errors caused by imprecisely detected eye locations, the training data is aug-
mented with so-called virtual samples. These are generated by artificial perturbations
of the originally detected eye locations by ±2 pixels in x- and y-direction. The face
is then aligned according to these new coordinates and stored in the training database.
Since nine locations per eye are evaluated, this increases the training set size by factor
81, which allows to build meaningful models even for people with little training data.

The preprocessing of the video data is complete at this point and the following section
will explain how feature vectors are extracted from the registered faces.
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3 5 10 32 64

Figure 3.6: Reconstruction of a face using different numbers of AC coefficients. DC is included
for better visualization. The right-most image corresponds to the original image.

3.3 Local appearance-based face model

Appearance-based models are characterized by the usage of pixel intensities as features
for recognition purposes rather than geometric features. For the reasons explained in
Section 2.3, the discrete cosine transform was chosen to implement this approach.

Research by Ekenel and Stiefelhagen (2005) showed that traditional holistic ap-
proaches like PCA are outperformed by local models as these are less affected by local
variations. Therefore, DCT is applied to non-overlapping blocks of 8×8 pixels in size.
This size allows sufficient compression while offering a reasonable constancy towards
local variations within each block. Due to the locality of the approach, proper align-
ment of the face image is crucial to ensure that the same parts of each face get encoded
in the same block. Local feature vectors are built by zig-zag scanning the coefficients.
The DC coefficient is omitted, as it only represents the average gray value of the block
and is therefore strongly affected by illumination changes. From the remaining, only
the first five coefficients are selected. These capture a major part of the block’s informa-
tion while the dimensionality of the global feature vector is kept in reasonable bounds.
Figure 3.6 visualizes image reconstructions from reduced numbers of coefficients to
confirm this decision. Normalization of the local feature vectors to unit norm further
increases robustness against lighting variations (Ekenel and Stiefelhagen, 2006b). The
global feature vector, finally, is simply the row-wise concatenation of the local ones.
Thus, the input dimensionality is reduced from 64×64 = 4096 to 320.

It is important not to confuse these features with structural features which are used,
for example, in component-based face models like eye, mouth and nose positions (e. g.,
Heisele et al., 2001a). The DCT only transforms the data to a different representation
which is more compact than raw image intensities. Therefore, the resulting feature
vector leads to an appearance- rather than a feature- or component-based model.

3.4 Classification

This section will present the two concepts of classification: A k-nearest-neighbor model
(Section 3.4.1) and a Gaussian mixture model (Section 3.4.2). In parallel, the ap-
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proaches to temporal fusion are introduced. While feature fusion is performed on the
frame level, decision fusion is used to classify the whole sequence. Both classifiers are
trained person-wise, i. e., one mixture model and one set of representatives are gener-
ated for each subject individually. This allows easy extension or, if necessary, reduction
of the database without the need to retrain the whole system.

3.4.1 K-nearest neighbor model

The K-nearest neighbor (KNN) model is based on representatives as introduced in Sec-
tion 2.5. These are selected from the training set using the well-known k-means clus-
tering algorithm (see Section 2.4). The number of clusters for a certain person depends
on the number of training samples available. Like this, more accurate models can be
built for people who “use” the system more often because more training data implies a
larger bandwidth of captured variations. The resulting cluster means are then used as
representatives.

At runtime, the ten representatives Si, i = 1,2, . . . ,10, which are closest to the test
vector x, are selected with score si = d(x,Si). The L1-Norm or city block distance

d(x,y) = ‖x− y‖1 =
D

∑
j=1
|x j− y j| (3.5)

with D being the dimensionality of the feature vectors, is used. Because distances can
differ largely between frames, they need to be normalized. This is achieved with linear
min-max normalization (Snelick et al., 2005),

s′i = 1− si− smin

smax− smin
i = 1,2, . . . ,10 (3.6)

which maps the scores to [0,1]. To have equal contribution of each frame, these scores
are re-normalized to ∑

10
i=1 s′i = 1. Of course, among the ten closest representatives, there

can be several ones of the same class. Since some people have far fewer representatives
than others, care must be taken that their scores are not dominated by those. Individual
scores are selected by a simple max-rule, which only selects the maximum score for
each class. The popular sum-rule (Kittler et al., 1998), which adds up the scores for
each class, is no alternative due to the heterogeneity of individual training set sizes. It
can distort the classification results and prevent small classes from being recognized.

An example shall help to clarify this. Assuming a simple database consisting of one
representative of person A and nine representatives of person B, a test vector is pre-
sented to the classifier. The test sample is assumed to have a distance of 80 to class
A, and of 90,95, . . . ,130 to class B, respectively. These distance values are chosen
in anticipation of Figure 3.7(a), which shows the observed distribution of distances to
correct and false classes. It is obvious, that the selected values express a reasonable dis-
similarity between person A and B. The expected classification is “A”. The normalized
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score of class A is 0.22, while the scores for class B range from 0.17 to 0. The max-rule
would now select class A over class B, while the sum-rule would clearly decide in favor
of class B with a total score of 0.78.

Temporal fusion

In order to fuse the scores of multiple frames, three approaches are evaluated. Except
for the first, the decision is based on the final score after all frames have been processed.

No fusion. In this case, every single frame is evaluated on its own. It is used to
determine the baseline performance of the system. It will be referred to as
Frame-KNN.

Simple sum This approach accumulates frame scores over time. The decision will
then be made on the final score. It will be referred to as Video-KNN.

Weighted sum Since not all frames are of the same quality and some might be more
ambiguous than others, a weighting is introduced in order to penalize uncertain
frames. Two observations are used to determine a frame’s weight.

1. For wrong classifications, the distance to the closest representative is, on
average, larger than for correct ones. Moreover, badly aligned frames result
in larger distances as well. To account for this, the frames fi, i = 1,2, . . ., are
weighted with respect to the closest representative c with

wDTM( fi) =

{
1 if d( fi,c) < µ

e−
d( fi,c)−µ

2σ2 otherwise
(3.7)

This weighting function is chosen according to the observed distribution of
frame distances d( fi,c fi,correct), the distances of all frames fi to the closest
representative c fi,correct of the corresponding correct class. The distribution,
determined on a parameter estimation set, resembles a normal distribution
N (x; µ,σ2). To increase robustness against outliers, µ is chosen as sample
median, σ2 as median absolute deviation (MAD, Huber, 1981) An example
distribution and weight function is shown in Figure 3.7. Using the weight
function wDTM, the influence of frames which are not sufficiently close to
the model is reduced. This weighting scheme will be referred to as distance-
to-model (DTM).

2. In case of misclassification of frame fi, the difference of the distances ∆( fi)
to the closest and second closest representatives is generally smaller than in
the correct case. The distribution of these distances follows approximately
an exponential distribution

ε(x;λ ) = 0.1λe−λx with λ = 0.5 (3.8)
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Figure 3.7: DTM weight function. (a) Distribution of the distances to the closest rep-
resentative of the correct class (blue, solid) and to all other classes (green, dashed) and

(b) the actual weight function.

The weights are then computed as the cumulative distribution function of
ε(·)

wDT2ND( fi) = E(∆( fi)) = 1− e−λ∆( fi) (3.9)

An example distribution and weight function is shown in Figure 3.8. This
weighting scheme will be referred to as distance-to-second-closest (DT2ND).

This fusion approach will use the product of the so-computed weights to modify
a frame’s share in the final score. It will be referred to as Weighted-KNN.

3.4.2 Gaussian mixture model

The Gaussian mixture model approach trains one GMM per class using the EM algo-
rithm. Likewise the KNN model, the number of components per mixture depends on
the number of training samples available for a person. At runtime, person x is classified
as one of the N registered individuals in a maximum log-likelihood manner using

argmax
i∈N

logP(x|i) = argmax
i∈N

log
ki

∑
j=1

αi j ·N (x; µi j,Σi j) (3.10)

To keep the computational effort within reasonable bounds, only a diagonal rather than
the full covariance matrix is used.
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Figure 3.8: DT2ND weight function. (a) Distribution of the distances between the closest
and second closest representatives for correct (blue, solid) and false classifications (green,

dashed) and (b) the actual weight function.

Temporal fusion

Again, three approaches are employed to evaluate the classification performance of the
GMM setup on video input. As above, the classification of a sequence is made on the
final score.

No fusion Similar to the KNN model, this approach determines the baseline perfor-
mance of the model. Every frame is evaluated on its own based on a min-max
normalization. The GMM outputs represent a proximity instead of a distance
measure, i. e., the more similar the input is to the modeled class, the higher are
the GMM outputs. Thus, only the fraction in Equation (3.6) is used, instead of the
difference, to perform the normalization. It will be referred to as Frame-GMM.

Bayesian inference Using Bayes’ rule, posterior probabilities are computed for each
class. These posteriors are used as priors in the next frame. The posterior prob-
ability P(it |x0:t) of person i at frame t given the all the previous observations x0:t
is calculated as

P(it |x0:t) =
P(xt |it) ·P(it |x0:t−1)

P(xt)
(3.11)

The conditional observation likelihood P(xt |it) is computed by the GMM for per-
son i, the unconditional one by

P(xt) =
N

∑
i=1

P(xt |it) ·P(it |x0:t−1) (3.12)
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with N being the number of individuals. The priors are initialized uniformly, i. e.,

P(i|x0) =
1
N

(3.13)

This approach takes into account the temporal dependency by computing the
probability to observe a given sequence of input frames. It will be referred to
as Video-GMM.

Bayesian inference with smoothing Based on the previous approach, the idea of a
consistent identity is introduced as suggested by Zhou et al. (2003). The iden-
tity of an entering person does not change but depending on frame and model
quality the classification of single frames can differ from previous ones. As a
consequence, the influence of frames which are not consistent with the current
sequence hypothesis, i. e., the current classification for a given sequence, is re-
duced. Extending Equation (3.11), the smoothed posteriors are calculated as

P(it |x0:t) =
P(xt |i) ·P(it |it−1) ·P(it |x0:t−1)

P(xt)
(3.14)

with

P(it |it−1) =

{
1− ε if it = it−1
ε

N otherwise
(3.15)

The amount of smoothing is determined by the smoothing parameter ε , where
smaller values denote stronger smoothing. With a value of 0, the sequence is
basically classified solely based on the first frame. Nevertheless, values close to
0 lead to a stabilization of the sequence hypothesis while still allowing a change
to a different identity as the experiments in Section 4.2.8 will show. Further on,
this approach will be referred to as Smooth-GMM.

3.5 Region-of-interest tracking

When somebody enters the room, it is likely that his or her face and especially the eyes
are not visible in every single frame. Most of the time, this is due to the person turning
sideways or looking down for a moment, but it can also be caused by fast movement
which blurs the person’s appearance. Both for data collection and recognition, it would
be unfortunate, if the system lost track of the person at that point. As far as data collec-
tion is concerned, this would lead to a premature end of the recording, resulting in an
incomplete video sequence. Additionally, if the person faced the camera again, a new
recording would be triggered, yielding two video fragments of the individual entering
the room. In the case of recognition, this leads to two classification results and depend-
ing on the combination of good and poor frames, the classification may get unstable
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since less data per sequence is available for evaluation.
The Kalman filters, which track the eyes, cannot save this situation because the person
might change the direction of movement while facing away from the camera. The time
that passed since the last correction of the Kalman filters will become too large, and the
tracking results will become unusable.
Nevertheless, there is a simple method to resolve the stated problem. Since the camera
runs at a speed of 25 frames per second (fps), the positional difference of a person’s
location between frames is quite small. Complementary, some skin from cheeks, ear,
neck or forehead usually remains visible. This is even true when the person turns around
completely, given the neck is not occluded by hair or clothing.
So, if both the eye prediction and detection, and therefore the confirmation of the face
candidate, fail, but the skin region overlaps the last confirmed detection more than a
certain extent, this skin region is considered to represent the formerly successfully de-
tected face. Although this frame can not be further evaluated in terms of recognition, at
least the position of the last confirmed face can be updated accordingly. To account for
the uncertainty introduced by this approach, the search area is slightly increased into
all directions. With this basic tracking approach, an interruption of the recording or
recognition procedure can be avoided in most cases. Furthermore, it is still possible to
concentrate processing on a small region of the subsequent frame instead of the whole
image to save processing time.
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This chapter will give insights into the structure of the utilized data sets and evaluate the
performance of the system in the given scenario. The first part, Section 4.1, examines
the quality of the automatic data collection process. Afterwards, Section 4.2 gives
details about the collected data and analyzes the system’s recognition performance from
different perspectives.

4.1 Face recorder

The crucial part in evaluating the performance of the face recorder is to determine how
many of the people entering the room are actually detected and recorded. Besides, it
is necessary to examine how much of the genuine sequence is finally captured. Like
the recognition task, subjects are non-cooperative and are allowed to move and behave
naturally.

4.1.1 Experimental setup

Due to the unobtrusive manner in which data was collected, single or groups of persons
can face the camera while just standing in or passing through the camera’s field of view.
This triggers the detection and recording system in addition to individuals that enter the
room. Since the focus of this system lies on the latter, other face appearances need to
be filtered. To achieve this, continuous video is manually labeled to flag sequence parts
in which people enter the room. This is the ground truth for the following evaluation.

The performance of the face recorder is assessed with two measures: first, the number
of detected sequences and second, the average overlap of the detected sequences with
the genuine ones. This overlap is a percentage with respect to the length of the ground
truth labeled data, i. e., an overlap of 100% means that the detected sequence covers at
least all frames of the genuine one.

Data set I

For this evaluation, four continuous video streams were recorded on three different
days and manually labeled for ground truth. They cover a time frame of 16.5 hours
and consist of approximately 1.5 million frames. Table 4.1 gives a detailed overview.
Looking at the share of less than one percent of relevant data within the recorded video,
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Duration Total No. of No. of
Sequence (hh:mm:ss) no. of sequences relevant

frames frames

A 02:53:16 259,910 42 2,929
B 04:04:13 366,318 12 3,233
C 03:25:25 308,124 12 989
D 06:07:38 551,443 63 6,220

Total 16:30:32 1,485,795 129 13,371

Table 4.1: Overview of data set I. The number of sequences refers to situations in which some-
body is actually entering the room.

it is obvious that continuous recording is not an option for sensible data collection,
not only concerning memory requirements but especially in terms of effort and time-
consumption of tedious manual segmentation.

4.1.2 Detection results

The results in Table 4.2 are given as correct detection rate (CDR) and false detection
rate (FDR). CDR denotes how many of the labeled sequences have been successfully
detected by the system. FDR represents the share of falsely detected sequences among
the detected ones. A correct detection is given if a detected sequence overlaps at least
50 % of a labeled one. The total CDR for different overlap values can be read off
Figure 4.1. Since the results are computed on sequence level, they cannot be directly
compared to results achieved by, e. g., Viola and Jones (2001) who measure the per-
formance on the total number of processed positive and negative sub-windows in all
images.

4.2 Face recognizer

In this section, following the analysis of the available data, the closed-set and open-set
identification tasks are introduced, together with the corresponding performance mea-
sures. The remaining subsections extensively evaluate the performance of the different
classification models introduced in Chapter 3.
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Sequence CDR (%) FDR (%)

A 92.9 9.3
B 83.3 0.0
C 100.0 0.0
D 95.2 9.1

Total 93.8 7.6
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Table 4.2 Figure 4.1
Detection performance of face recorder. Results in the table are given as correct detection rate
(CDR) and false detection rate (FDR). These measures are based on sequences rather than
frames with an overlap of at least 50 percent. The diagram shows the CDR dependent on the

overlap.

4.2.1 Experimental setup

Data set II

Data set II is made up of videos of 41 persons. The number of sequences per person
varies between 5 and 250. This large span is a consequence of real-world data collection
since some people happened to enter the room more often than others. Data has been
collected over a time period of seven months, resulting in 2,292 sequences altogether.
The data is divided into three sets for training, parameter estimation and evaluation
according to the recording date. This reflects a realistic usage scenario, in which the
recognition system is trained once and afterwards confronted with new data. Since the
sequences of each person are not equally distributed over the data collection time span,
the split date is determined for each person individually.

For each person, the training set contains two thirds of the available data, but not
more than 35 sequences. This allows for reasonable amount of variation within the
training data while not making it unnecessarily large. In addition, while still favor-
ing common people with a more detailed model, it avoids the generation of redundant
model components which can lead to less common people being dominated. In fact,
the number of sequences is only a rough estimate for the training set size, as it does not
take into account the length and the quality of these sequences. The actual training set
consists of the face images extracted from them. The automatic extraction process pro-
duces approximately five percent of misaligned and therefore unusable images, which
are sorted out manually. In the cleaned set, the number of samples per person ranges
approximately from 80 to 1,500. The complete basic training set consists of 21,875 im-
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Number of sequences

Training set 905
Parameter set 386
Test set 1,001

Total 2,292

Table 4.3: Data set II: Sizes of the three subsets. Splits are made person-wise. A listing by
individual can be found in Appendix A.

ages. Taking into account the augmentation with virtual samples, the final training set
counts around 1.77 million elements. While this seems a lot on first sight, the feature
vector size of 320 dimensions requires a large amount of training data in order to be
able to build meaningful models.

Approximately one third of a person’s remaining data is used to create a parameter
estimation set in order to compute the weights for the Weighted-KNN scheme. Due to
the small amount of available data for some persons, this set does not contain sequences
of everybody. Nevertheless, it is general enough to model the parameters appropriately.
The remaining data forms the test set for evaluation purposes. The set sizes are listed
in Table 4.3. A more detailed analysis of data set II can be found in Appendix A,
specifying the set sizes and number of registered faces per individual as well as the
distribution of individual sequence lengths. Appendix B lists the model sizes for each
person.

Recognition tasks

In order to evaluate the recognition performance, two tasks are presented to the system.

Closed-set identification This task shows the baseline performance of the system.
Given that a person is registered in the database, the system needs to classify
him or her. The performance is measured as correct classification rate (CCR).
For the frame-based approaches, it is computed over all frames in which the eyes
could be successfully either detected or tracked and therefore the face could be
registered. The CCR of the video-based approaches is computed as percentage
of correctly recognized sequences in the test set.

Open-set identification This task extends the previous one by the difficulty that un-
known people, i. e., persons which are not registered in the database, can be en-
countered. Therefore, prior to classification as one of the possible identities, the
system has to decide whether a person is known or unknown. Impostors are to be
rejected, while genuine members of the database need to be accepted and classi-
fied correctly. To model this task with the existing data set, the system is trained
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in a leave-one-out manner. One person at a time is removed from the database
and is presented to the system as impostor during the subsequent evaluation on
all sequences. This process is repeated N times, so that each person takes the
impostor role once. The acceptance-rejection criterion is a threshold on the con-
fidence of the classification, which is a value between 0 and 1. If the confidence
value is not high enough, the person is rejected.

For the video-based KNN models, a measure of confidence of the classification is
derived by min-max normalization (see Equation (3.6)) of the accumulated scores
at the end of the sequence. The Frame-KNN and Frame-GMM scores are already
normalized and can serve as confidence measure without further processing. This
applies for the video-based GMM approaches as well since they compute proba-
bility scores.

Compared to closed-set identification, two more error types can occur. Additional
to false classifications, the system can erroneously either reject genuine identities
or accept impostors. All three errors have to be traded-off against each other as
it is not possible to minimize them at the same time. For this reason, a different
performance measure is necessary. The employed equal error rate (EER) denotes
the minimum combined error rate. It is reached when

FAR = FRR+FCR (4.1)

i. e., when the false acceptance rate (FAR) among the impostors is equal to the
sum of the false rejection rate (FRR) and the false classification rate (FCR)
among the registered persons. The rates are defined as

FAR =
ni,accepted

ni
(4.2)

FRR =
ng,rejected

ng
(4.3)

FCR =
ng,misclassified

ng
= 1−CCR (4.4)

where n denotes number of frames or sequences and the subscripts g and i denote
genuine or impostor samples, respectively.

4.2.2 Comparison of frame- and video-based recognition

To evaluate the performance improvement gained by using video sequences instead of
single frames for recognition, the system is tested on closed-set identification. Results
for the open-set case follow, starting with Section 4.2.6. Table 4.4 clearly indicates a
major performance increase independent of the underlying model. It is to be remarked,
that the approximately 38,000 frames used in the frame-based recognition are exactly
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Frame-based Video-based Weighted Smooth

KNN 68.4 % 90.9 % 92.5 % -
GMM 62.7 % 86.7 % - 87.8 %

Table 4.4: Comparison of frame- and video-based recognition. Smooth-GMM uses ε = 10−5.

the same as in the video-based one. So, the registration of the faces is still video-based
because eyes are tracked over time, but the classification is done on individual frames.

Among the 1,001 test sequences, there were 58 in which no eye pair could be detected
and which could therefore not be recognized. This represents a share of 5.8 % of the
test data. This is a good result as it indicates that eye detection is successful in more
than 94 % of the cases across the full bandwidth of variations.

As far as the different models are concerned, the discriminative approaches perform
better than the generative ones. There are two possible reasons for this. First, a gener-
ative model is a parametric model and the required parameters need to be learned from
training data. The problem is, that the higher the dimensionality of the feature vectors,
the more training data is necessary to allow meaningful model generation. While there
is a lot of training data for some persons, there is little for others. As will be further
explained in Section 4.2.4, a lack of training data affects the individual recognition per-
formance. The second possible reason for the lower performance of the GMM-based
models compared to the KNN-ones is the possibility, that the model did not generalize
well because the training data might not be representative after all. Again, this is very
likely to be the case for persons with little training data. As a consequence, the model
adapted to peculiarities of the training set. The discriminative models, in contrast, try
to classify new data only based on the existing data, without making any assumptions
about its distribution. It is less affected by little training data, given that the available
data sufficiently spreads out. If this is not the case, i. e., all examples cluster closely
together, this approach will fail as well. However, the results show that the available
amount of data is more appropriately modeled using a discriminative approach rather
than a generative one.

4.2.3 Recognition rate by rank

To investigate the robustness of the results, it is worth looking at the results includ-
ing rank-2 and rank-3 classifications, i. e., cases in which the correct identity is among
the best two or three hypotheses. As clearly depicted in Figure 4.2 and Table 4.5, the
frame-based approach often gets close to the correct decision. However, it has to decide
on the identity even in the case that the single feature vector is of questionable quality.
The approach lacks an opportunity to support or discard the hypothesis using additional
data as done by the sequence-based methods. These are able to exploit the temporal de-
pendency of consecutive frames and to promote the rank-2 and rank-3 classifications of
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Figure 4.2: Correct recognition rate by rank for the KNN models.

Frame-KNN Video-KNN Weighted-KNN

rank-1 68.4 90.9 92.5
rank-2 76.5 94.8 95.6
rank-3 81.1 96.2 96.7

Table 4.5: Correct recognition rate by rank for the KNN models.

the frame-based models to first place. Since many frames contribute to the decision, the
overall performance improvement is larger than the difference between the correct and
rank-3 classifications in the frame-based approach. The more frames can be evaluated,
the more likely it is to obtain a correct result. This gets confirmed by the observation
that the average length of correctly classified sequences is larger — 39 frames — than
that of misclassified ones with 28 frames as depicted in Figure 4.3. If the frames of a
short sequence are additionally of bad quality, e. g., caused by low resolution or mis-
alignment, or the input generally differs largely from the modeled data, the resulting
scores for each identity are not expressive. In these cases, their ranking allows, at most,
vague assumptions, if at all, about the identity of the person in question. This explains
the smaller performance gain for video-based data if rank-2 and rank-3 classifications
are included, compared to frame-based approaches.

4.2.4 Recognition rate by subject

The training set contains considerably differing amounts of training data for each indi-
vidual. To answer the question how this affects the recognition performance, Figure 4.4
shows the correct classification rate per person. Unfortunately, the system fails to rec-
ognize five people in the test set completely. However, as can be seen from Table 4.6,
highlighted in dark gray, there is very little test data available for these people.
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Figure 4.3: Box plot showing the distribution of sequence lengths for correct and false classifi-
cations. It is based on results achieved with the Weighted-KNN approach. The diagram depicts

median, upper and lower quartile, spread of the data and outliers.
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Figure 4.4: Correct recognition rate by subject based on Weighted-KNN

Identity 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
No. of sequences 3 2 2 90 53 7 3 28 3 40 5 32 · · ·

· · · 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 · · ·
· · · 5 33 5 2 3 2 179 96 11 50 3 6 49 16 31 · · ·

· · · 28 29 30 31 32 33 34 35 36 37 38 39 40 41
· · · 7 2 45 2 3 51 13 9 22 7 20 11 41 9

Table 4.6: Overview of test set size by person. Dark gray denotes persons which are not recog-
nized at all, light gray highlights individuals with CCR <80 % (cf. Figure 4.4). These number

include the missed sequences (see Appendix A for detailed listing).

54



4 Experiments

Apart from implying that there is only little training data available as well, this means
that results can break down easily since a single sequence contributes a third or even half
of a person’s classification rate. Besides, if test data happens to be from the same day,
it is likely that recognition performance is similar among the sequences due to similar
recording conditions in terms of illumination and appearance. Therefore, recognition
can fail for a complete subset.

Nevertheless, small amounts of data do not necessarily entail bad recognition perfor-
mance as can be seen from many examples in Figure 4.4 and Table 4.6. Furthermore,
looking at the person-wise results, one can see that more than 70 percent of the people
are correctly classified with a CCR above 80 percent. Persons with lower results are
highlighted in light gray in the table.

Persons 21, 34 and 36 deserve some special attention. On first sight, they seem to
have quite low recognition rates compared to the available amount of data. But looking
at the distribution of missed sequences in the test set (see Appendix A), it gets clear
that these individuals are missed most compared to the other registered persons. The
recognition results are only based on 5, 9 and 3 sequences, respectively. The number
of extracted training images suggest, that the miss rate within the training set is similar.
Especially individuals 21 and 36 have a very small number of training images, taking
into account the number of available sequences. As a consequence, the models do not
capture the appearance of these individuals well. The problems are caused, in all three
cases, by the persons’ haircut which often partly occludes one or both eyes. Actually,
this affects the results of “good” sequences as well, as it implies that, most likely, the
eyes could only be detected in and tracked over a small number of frames. So there
is less evidence available for classification and the result will be less stable and more
likely to be wrong.

4.2.5 Influence of data set augmentation

To justify the increased training efforts caused by the larger training set size, an ex-
periment was conducted to compare the recognition performance using augmented and
unaugmented training data. The comparison can only cover the KNN models as it is
not possible to train an appropriate GMM. This is due to the fact that many individuals
have fewer images in the training set than the feature vector’s dimensionality. As listed
in Table 4.7, recognition performance increases significantly in all three KNN cases.
This shows that the data augmentation is well worth the increased memory and time re-
sources. Adding noise to detected eye locations leads to samples of different scale and
rotation which increases the variation bandwidth and reduces the influence of possible
registration errors. Since the data set size is increased by factor 81, even persons with
few genuine training images can be modeled appropriately.
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Frame-KNN Video-KNN Weighted-KNN

genuine training set 56.6 % 87.6 % 88.2 %
augmented training set 68.4 % 90.9 % 92.5 %
significantly better X X X

Table 4.7: Influence of data set augmentation with virtual samples. All results improve signif-
icantly with a significance level of 0 %, 2 % and 0 %, respectively. Significance was computed

with crosstabulation.
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Video-KNN 23.4
Video-GMM 23.0

Weighted-KNN 21.0
Smooth-GMM 18.7

Frame-KNN 50.0
Frame-GMM 43.7

Figure 4.5: Recognition performance on the open-set identification task. The black line denotes
equal error.

4.2.6 Open-set identification

This and the following subsections will examine the open-set identification perfor-
mance of the proposed system. Figure 4.5 gives an overview of the results of the
models discussed in Section 3.4. A thorough investigation of the different frame-
weighting methods and of differently parametrized Smooth-GMM models will follow
in the subsequent sections. The ranking of the results presented here is similar to the
closed-set results. As expected, the frame-based approaches deliver the worst results.
Weighted-KNN slightly outperforms Video-KNN. Video-GMM performs worst of the
video-based approaches. The exception is Smooth-GMM, which performs worse than
both video-based KNN models for FARs of more than 60 %, but clearly provides the
best performance in terms of EER.
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Figure 4.6: Analysis of the contribution of FRR and FCR to the overall error rate of Weight-
ed-KNN. As earlier, the black line denotes equal error.

The receiver operating characteristic (ROC) curve in this figure shows the CCR de-
pending on the percentage of impostors accepted to the system. Hence, the question
arises to which extent each of the other two types of error, false rejection and false clas-
sification, impairs the classification performance. To investigate this, Figure 4.6 plots
FRR and FCR separately for Weighted-KNN. The lower bound corresponds to the CCR
as depicted in Figure 4.5. At the point of equal error, there remains only a minimal FCR
of about 1 percent while the major part of about 20 percent is caused by the false rejec-
tion of genuine identities. This is mostly caused, as above, both by low quality input
data and unmodeled variations, caused by the little training set sizes for some persons.

To understand how confidence values represent a sensible measure to decide whether
a person is known to the system, it is insightful to investigate how scores develop over
time for genuine and impostor identities. In Figure 4.7, scores are plotted for the same
test sequence. In the first case, the person is a genuine member of the database. The
final score is very distinct from the rank-2 and rank-3 scores which results in a high
confidence. In the second case, the person is removed from the database and takes the
role of an impostor. As a result, the “rivals” from the first case, score higher but there is
no clear winner. In fact, the best three hypotheses lie very close together, even after 45
frames. This leads to a low confidence value and increases the likelihood of rejection,
depending on the threshold.
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Figure 4.7: Comparison of score development for (a) genuine and (b) impostor identities de-
rived from the same test sequence with Video-KNN.

4.2.7 Influence of frame weighting

Two different methods have been proposed in Section 3.4.1 to judge a frame’s quality
and accordingly weight its influence in the classification process. Weighted-KNN uses
the combination of the computed weights, for which the results have been already re-
ported above. This section will investigate each of the two weighting schemes on its
own and relate it to the unweighted and double weighted cases. Actually, the latter two
form a lower and upper bound, as can be seen from Figure 4.8, for the former two.
The two weighting schemes affect different parts of the ROC curve. The DTM scheme
improves the recognition rate for high false acceptance rates. A FAR of 100 percent is
equivalent to closed-set identification in terms of the ROC curve because the CCR can
only be computed over genuine samples. In that case, DTM helps to reduce the influ-
ence of input that does not fit the model as caused by, e. g., failed registration. Thus,
it reduces the false classification rate, but it is not able to discriminate between known
and unknown persons as the feature vector of an impostor can be indeed very similar to
the model.

Genuine identities, however, usually have smaller distances to one single class rep-
resentative than to all other classes in the model, while impostors are similarly close to
multiple classes (cf. Figure 3.8). This ambiguity is exploited by the DT2ND weighting
scheme to identify impostors. Their scores are reduced, leading to smaller confidence
values, which in turn result in better rejection. The same threshold causes rejection
of more impostors than in the unweighted case or, to put it the other way round, the
threshold can be reduced causing fewer false rejections. As a consequence, the EER is
reduced in open-set identification.
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Figure 4.8: Influence of frame weighting. The black line denotes equal error. Please note
the different scaling compared to the previous figures. “Both” corresponds to Weighted-KNN,

“none” to Video-KNN.

4.2.8 Influence of smoothing

To examine the effects of the constraint that a person’s identity does not change within
a sequence, as formulated in Section 3.4.2, the Smooth-GMM model is evaluated at
different levels of smoothing. The smaller the ε-value, the stronger is the constraint. As
Figure 4.9 shows, a moderate amount of smoothing improves the open-set identification
performance. Small numbers of ambiguous and inconsistent frames do not derogate
the currently best score while many consistent frames increase the confidence of the
decision. As a consequence, a smoothed classification result is more distinct than an
unsmoothed one. Since smoothing generally favors sequences with consistent frame
hypotheses over ones with inconsistent classifications, it does not necessarily reduce the
number of false classifications but the augmented confidence leads to a reduction of the
false rejection rate. In contrast to genuine identities, impostors often cause inconsistent
frame scores, so that the resulting low confidence leads to a proper rejection. This
can readily be seen by comparing Smooth-GMM with Video-GMM and Weighted-
KNN in Figure 4.5. As mentioned earlier, Smooth-GMM performs slightly better than
Video-GMM, but, nevertheless, it does not reach the CCR of Weighted-KNN. In terms
of EER, however, it outperforms all other approaches due to the increased clarity of
classification results.

However, if the smoothing factor is chosen too small, the system gets stuck on the
decision of the first frames. Even if all subsequent frames are classified as a single
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Figure 4.9: Influence of identity smoothing. The values in parentheses are the ε-values used for
smoothing in Equation (3.14). The unsmoothed curve corresponds to the Video-GMM model.

different identity, this person’s video-based score will grow only marginally because
the frame-based scores are practically reduced to zero.

Based on the observation that the first frames are generally of low quality, especially
due to low resolution, it would be possible to omit them in the classification process.
This assumption is not included into the current system as this would restrict the system
to this specific door scenario.

4.3 System speed

This section will present the processing times per frame in order to substantiate the
claim for real-time capability. The times reported for the face recorder are determined
on sequence A of data set I, the times for the face recognizer are based on measurements
taken of seven randomly selected sequences from data set II. Each sequence was pro-
cessed five times. The recognition was performed with a KNN model, namely Video-
KNN, since frame-weighting is currently done only during score post-processing, not in
the system itself. The times are very similar if GMMs are used and not listed separately.
Speed evaluation is performed on a Pentium 4 at 3 GHz with 1 GB RAM.

The average processing time per frame is 37 ms. Since the computational effort
varies between different processing steps, it is necessary to examine some of them on
their own. These are listed in Table 4.8. The distinction between “face recorder” and
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Face recorder
Empty image 28 ms
While recording 18 ms

Face recognizer
Pre-init 46 ms
Initialization of Kalman filter 65 ms
During recognition 30 ms
Overall average 37 ms

Table 4.8: Processing times per frame during different stages.

“face recognizer” simply reflects the different data in evaluation, and does not denote a
separation of functionality.

Empty image refers to plain background images, i. e., no face is visible. Its process-
ing comprises the continuously running skin segmentation which is fast but, due to a
lacking ROI, is performed on the full resolution image. While recording, the amount
of processed input data is reduced, but the face detection and tracking consumes addi-
tional processing time. In total, however, speed increases by one third, so that proper
recording of 25 fps is ensured.

During recognition, the processing is slowed down due to the feature extraction and
classification stages. The most time consuming part is the initialization of the Kalman
filter. It takes especially long if several valid eye pair hypotheses exist as each of these
can trigger a rotation of the image patch with subsequent face detection. Can because
initialization continues as soon as one hypothesis is confirmed. Since this search is not
necessarily restricted to the frame in which a face is finally detected, the processing
time preceding the initialization is listed as well. Besides including the unsuccessful
validation of eye pair hypotheses, it covers the computational effort needed to build the
track hypotheses in the first place.

All in all, the system is able to process the camera input at 25 fps in real-time. The
initialization of the Kalman filter causes a small lag which does not affect system perfor-
mance. Even if the system would be on every frame as slow as in the initialization step,
it would still be able to process 15 fps and therefore be considered real-time capable.
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5 Conclusion

Face recognition systems provide a wide variety of application areas. In contrast to
other biometric systems which use fingerprints or iris scans, they do not require the
explicit cooperation of the person to be identified. While they can be employed in
security-related domains like video surveillance on the one hand, they allow as well for
“convenience” applications, such as smart homes or cars that automatically adapt to the
user or robots that show personalized behavior depending on who they are dealing with.

The key to this unaware recognition is a system that is able to process data under ev-
eryday conditions and to accomplish this in real-time. Violations of these requirements
necessarily interrupt the persons to be identified or restrict them in their actions. An
example of such a restriction is the necessity to stop for a moment and watch straight at
the camera while not being allowed to wear any accessories in order to be recognized.
As shown in this work, the proposed system is able to fulfill both requirements.

A large set of segmented data was automatically collected under real-life conditions
including extreme variations in illumination, expression, pose, appearance or partial oc-
clusion. The local appearance-based approach is shown to handle these variations well.
This can be seen from the fact that they do not impede successful recognition in a ma-
jority of the cases. The local approach is supported by video-based recognition which
greatly improves recognition performance compared to single-frame classification. The
exploitation of temporal dynamics between frames boosts the correct recognition rate
from less than 70 percent to more than 90 percent. Additionally, it increases the number
of evaluable frames in the first place by improving eye detection using tracking meth-
ods. It is shown that longer sequences are more likely to be correctly recognized than
shorter ones.

Besides capturing many variations, the real-life conditions during data collection en-
tail largely different numbers of samples per person, as people are not restricted to
pass the camera at least or at most a certain number of times. While a high number of
samples generally improves recognition rates because more variation is captured and
modeled, it does not mean that subjects with little training data are not recognizable. In
fact, the system fails on very few people and this is not only caused by little training
data but by small sets of low-quality test data as well. In total, more than 70 percent of
the people are each correctly classified in more than 80 percent of the cases.

Augmentation of the training data with virtual samples increases captured scale and
in-plane pose variations and reduces the impact of possible registration errors. This
especially allows persons with little training data to be modeled in more detail. Overall,
training data augmentation improves the recognition rate significantly.
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5 Conclusion

CCR (%) EER (%)

Weighted-KNN 92.5 21.0
Smooth-GMM (ε = 10−5) 87.8 18.7

Table 5.1: Summary of the best recognition results.

Since the mentioned application scenarios are not necessarily restricted to a fixed
group of people, the system needs to be able to handle unknown persons. Naturally,
the increased difficulty of open-set identification leads to higher error rates. The EER
of just under 19 percent reflects the difficulties introduced by the real-life quality of
the data. This assumption is backed by the results of the frame-weighting and smooth-
ing experiments which reduce the EER by decreasing the impact of low-quality and
badly modeled frames. For KNN-models, two frame-weighting schemes, DTM and
DT2ND, were introduced to achieve this by giving individual weights to single frames.
For GMM-based models, a smoothing term was used to weight the current frame in
relation to the current hypothesis. Table 5.1 summarizes the best results achieved in the
recognition experiments.

It is shown that the system is able to perform the task within real-time constraints.
On average, a processing rate of 25 fps can be achieved. Taking into account the short
but most time-consuming part of the system, the initialization of the Kalman filter, the
system still processes 15 fps which is still considered to be real-time.
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The following suggestions are made to enhance the current system. First of all, in order
to improve the closed-set performance, additional frame weighting methods should be
explored. Starting from the currently used DTM weighting scheme, these are needed
to reliably identify bad quality frames and reduce their noisy influence on the sequence
scores. A detailed analysis of the training data according to the menagerie introduced
by Doddington et al. (1998) would allow for a system that can adapt certain weights and
thresholds depending on the class to be recognized. The menagerie concept divides the
data into the four non-disjoint classes sheep, goats, lambs and wolves. These classes
describe how easy a subject can be recognized, be imitated by or imitate another class.
Initially introduced for speaker recognition, Wittman et al. (2006) showed that these
categories apply to face recognition problems as well.

In order to improve handling of partial occlusions, Ekenel and Stiefelhagen (2006a)
suggest to evaluate a reduced number of blocks instead of all 64. They propose to use
a selection scheme based on block-wise similarity scores for the mean training image
and a test image. This score can be either based on pixel values or DCT coefficients.
The blocks with the highest scores are selected for recognition because these are the
least likely to be occluded since they are very close to the representation. Since this
approach is based on mean values over the training set, it is not applicable to real-life
data which especially includes head pose variations. With these, certain blocks can
contain different parts of the face in different images and a mean block value over all
images will have no expressiveness. However, the approach could be extended by using
a block’s entropy as selection criterion. As this would concentrate on high detail areas
of the image, it could be misleaded by high-detail accessories like finely patterned
scarves or caps. Nevertheless, many occlusions caused by sunglasses, hands or even
hair are comparatively homogeneous and would therefore be ignored or down-weighted
in the classification process.

Instead of selecting blocks in the test image, a different approach would be to select
a set of blocks specific for each class. The test vector would then be evaluated against
these downsized representatives. Including the outcome of the “zoo analysis” proposed
above, this could possibly resolve some of the recognition problems arising from the
four categories. Furthermore, since fewer dimensions have to be processed, this will
result in a speed-up. Additionally, with a reduce problem dimensionality, generative
models like GMMs require less training data to build meaningful models. But, this
approach runs the risk to adapt to specific characteristics of the training set because the
training data can always only provide a “snapshot” of individuals and variations.
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Concerning the open-set identification task, it is crucial to further reduce the EER.
The current approach takes into account the frame-based scores by applying a threshold
to the final sequence score. While DT2ND-weighting reduces the impact of ambiguous
frames in the Weighted-KNN scheme, a smoothing term weakens the influence of in-
consistent frames in the Smooth-GMM scheme. Both approaches reduce the EER inde-
pendently. A classifier trained on several ambiguity and consistency measures is likely
to achieve a considerable improvement in the separation of known and unknown people
over the current final-score-based confidence threshold. Imaginable additional features
to train this classifier comprise a general measure of frame-score consistency over the
whole sequence in contrast to Smooth-GMM, which compares the current frame clas-
sification to the currently best hypothesis, the resolution of the non-normalized face
images as frame quality measure and sequence length as well as absolute final score as
further score confidence measures. However, it has to be kept in mind that impostor
detection is a non-trivial task because it requires the separation of an arbitrary subset of
all possible faces from the rest.

If the FAR and FRR have been reduced to a reasonable degree, i. e., if it is possible
to distinguish impostors from genuine users reasonably well, it will be possible to ex-
tend the system to learn new people automatically. Each time, an unknown person is
encountered, the test vectors can be used to train a model for this person in the back-
ground and add it to the database as soon as it exceeds a certain size. Similarly, small
models capturing little variation can be extended every time that person is recognized
with sufficient confidence. While some faces match the model very well and lead to
the stable score, the remaining detected faces can be used to refine the model. How-
ever, automatic, unsupervised extension of the database always bears the risk that a new
model is generated even though the current sequence captures a strong variation of an
already registered person.

Nevertheless, this approach could then even be used to automatically train the system
from scratch. A house will get to know its visitors and a robot will make new friends.
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A Detailed Overview of Data Set II

A.1 Set sizes per individual

Number of sequences per set Total Number of
Identity Training Parameter Test number of training

estimation sequences images

1 7 1 3 11 260
2 5 − 2 7 82
3 5 − 2 7 93
4 35 35 90 (−1) 160 1,127
5 35 25 53 (−1) 113 693

6 20 3 7 30 282
7 8 1 3 12 113
8 35 13 28 (−2) 76 1,114
9 6 − 3 9 91

10 35 19 40 (−1) 94 598

11 15 2 5 22 685
12 35 15 32 (−2) 82 973
13 13 2 5 20 352
14 35 16 33 84 1,120
15 11 1 5 17 279

16 3 − 2 5 87
17 6 − 3 9 116
18 4 − 2 6 129
19 35 35 179 (−1) 249 1,016
20 35 35 96 (−7) 166 1,325

21 30 5 11 (−6) 46 94
22 35 24 50 109 1,191
23 8 1 3 12 93
24 14 2 6 22 752
25 35 23 49 (−4) 107 505
· · · · · · · · · · · · · · · · · ·
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A Detailed Overview of Data Set II

Number of sequences per set Total Number of
Identity Training Parameter Test number of training

estimation sequences images

· · · · · · · · · · · · · · · · · ·
26 31 7 16 54 588
27 35 15 31 (−4) 81 381
28 18 3 7 (−1) 28 189
29 3 − 2 5 80
30 35 21 45 101 873

31 3 − 2 5 84
32 5 − 3 8 177
33 35 24 51 (−3) 110 900
34 35 5 13 (−4) 53 503
35 24 4 9 (−1) 37 489

36 35 10 22 (−19) 67 259
37 17 2 7 26 283
38 35 9 20 (−1) 64 634
39 28 4 11 43 897
40 35 20 41 96 1,463
41 26 4 9 39 651

Total 905 386 1,001 (−58) 2,292 21,875

Table A.1: Dataset II: Detailed listing of how many sequences of each person are part of each
set. The negative numbers in parentheses denote how many sequences could not be registered

for recognition.
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A Detailed Overview of Data Set II

A.2 Registered images per person

Identity Number of images
Training Parameter Test

Estimation

1 260 47 234
2 82 − 86
3 93 − 167
4 1,127 1,566 4,410
5 693 572 1,988

6 282 97 464
7 113 3 131
8 1,114 585 1,205
9 91 − 108

10 598 807 1,658

11 685 122 289
12 973 537 973
13 352 88 256
14 1,120 695 1,766
15 279 27 212

16 87 − 136
17 116 − 106
18 129 − 40
19 1,016 1,175 7,811
20 1,325 1,167 3,971

21 94 79 124
22 1,191 1,446 2110
23 93 29 159
24 752 97 235
25 505 914 1,671

26 588 24 916
27 381 414 1,063
28 189 79 255
29 80 − 77
30 873 621 2,259

31 84 − 156
32 177 − 109
· · · · · · · · · · · ·
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A Detailed Overview of Data Set II

Identity Number of images
Training Parameter Test

Estimation

· · · · · · · · · · · ·
33 900 642 2,025
34 503 373 191
35 489 80 311

36 259 57 104
37 283 41 157
38 634 281 730
39 897 149 391
40 1,463 770 1,901
41 651 121 457

Total 21,875 13,708 41,756

Table A.2: Dataset II: Number of registered images per person.

A.3 Individual sequence lengths
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Figure A.1: Number of frames per sequence. Leading and trailing frames — ten each — that
were added to the detected sequence during recording are excluded in this plot. For better
comparability with results in Figure 4.3, the sequence sizes are given for the test set, but can be

considered representative.
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B Model Sizes

Identity Number of components Identity Number of components
1 6 · · · · · ·
2 2 22 25
3 4 23 2
4 23 24 16
5 15 25 11
6 6 26 12
7 3 27 8
8 23 28 4
9 2 29 2

10 13 30 18
11 14 31 2
12 20 32 4
13 8 33 19
14 23 34 11
15 6 35 10
16 2 36 6
17 3 37 6
18 3 38 13
19 21 39 19
20 27 40 30
21 2 41 14
· · · · · · Total 459

Table B.1: Model sizes: Number of model components for each person. The numbers are the
same for both the KNN and GMM approaches.
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