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Abstract

In this paper, we present a novel face recognition system
that uses two-class linear discriminant analysis for clas-
sification. In this approach a single M-class linear dis-
criminant classifier is divided into M two-class linear dis-
criminant classifiers. This formulation provides many ad-
vantages like more discrimination between classes, simpler
calculation of projection vectors and easier update of the
database with new individuals. We tested the proposed al-
gorithm on the CMU PIE and Yale face databases. Signif-
icant performance improvements are observed, especially
when the number of individuals to be classified increases.

1. Introduction

The problem of face recognition has become one of the
most addressed problems in computer vision research. The
intense research efforts on face recognition mainly fuels
from the potential application areas, such as secure authen-
tication, surveillance and smart environments.

Since the beginning of 1990s, appearance based ap-
proaches have been dominating the face recognition re-
search. In Eigenfaces approach [8] the face is represented
by a new orthonormal basis vector set that best reconstructs
the face image in terms of mean-square error. Although
this approach is very successful in representing the face im-
ages in a compact form, it has received criticism of being
only a representation technique, and not aiming at classifi-
cation. The approach of Fisherfaces [6], which is based on
linear discriminant analysis (LDA), has been shown to di-
minish the effect of intra-individual variation under severe
illumination and expression variations, in the classification
step. LDA takes into consideration the class information
and directly aims at classification. It still uses PCA for
low dimensional representation and projects these low di-
mensional representation vectors onto a lower dimensional
space where the ratio of between-class scatter to within-
class scatter is maximized. Although this approach may

seem more suitable for classification, it has many problems.
First of all, in the absence of adequate training data, LDA
may not find the best projection directions for classification
[5]. Also, its performance for a large number of classes is
still an open issue. Moreover, if new face classes are added
to the classification task, all projection directions need to be
recalculated. To address these problems, many studies have
been conducted [9, 3, 4]. In [9] to eliminate the possibility
of losing discriminatory information due to a separate PCA
step a direct LDA algorithm is proposed. An approach that
tries to refine the optimality criteria in multi-class LDA and
tries to solve the small sample size problem is presented in
[3]. Similarly, in [4] to improve the optimality criteria of
multi-class LDA, a weighting scheme is proposed.

In this study we propose a two-class formulation of the
multi-class LDA where each individual in the database has
a separate projection vector which discriminates him/her
from the rest of the individuals. The main rationale to re-
sort to this classification scheme is to increase the discrim-
ination between classes. In addition, there are many other
benefits of this approach. First, the calculation of the pro-
jection vectors is much easier in two-class LDA. Second,
the problem of calculating wrong projection directions due
to insufficient training data is less likely to occur, since at
least one of the two classes has sufficient training data. That
is, it is quite reasonable to assume that the ”other individ-
uals” class has adequate training data. Third, there is no
difficulty to extend the approach to work for a large num-
ber of classes. If a new class is added, only the projection
vector for the new individual is required to be calculated.

The outline of the paper is as follows: In Section 2, two-
class and multi-class linear discriminant analysis are ex-
plained. Experimental results are presented and discussed
in Section 3. Finally, in Section 4, the conclusions are given.

2. Linear Discriminant Analysis

In the following subsections the derivation of multi-class
LDA, two-class LDA, and the way they are used to identify
faces are explained.



2.1. Multi-class linear discriminant analysis

The derivation of multi-class LDA is as follows (In the
formulas, lowercase letters denote scalar values, bold low-
ercase letters denote vectors, uppercase letters denote ma-
trices, and superscript T denotes transpose operation). Let’s
denote the low dimensional vector that represents face im-
age as xk, the mean value of the i-th class as mi, and the
mean value of all data as m. The between class scatter ma-
trix SB can be calculated as

SB =
c∑

i=1

ni(mi −m)(mi −m)T , (1)

where c is the number of classes and ni represents the num-
ber of face samples in the i-th class. The within class scatter
matrix is defined as

SW =
c∑

i=1

∑
xk∈X

(xk −mi)(xk −mi)T . (2)

LDA tries to find a projection direction that maximizes
the ratio of between-class scatter to within-class scatter as
shown below:

Wopt = argmaxW
|WT SBW |
|WT SW W |

, (3)

where Wopt represents the optimal projection matrix. In its
columns, it contains the generalized eigenvectors that cor-
respond to the largest eigenvalues in

SBwi = λSW wi. (4)

If SW is non-singular, Wopt can be calculated by simply
computing Eigenvectors of S−1

W SB . Instead of computing
Eigenvectors of S−1

W SB , it’s preferable to diagonalize SW

and SB simultaneously to obtain the same result [2].

2.2. Face recognition using multi-class LDA

To perform face recognition using multi-class LDA, at
first the dimensionality of the input image should be re-
duced to n − c to avoid the singularity of SW (here, n is
the total number of face image samples in the database,
and c is the number of classes). Afterwards Wopt can be
computed using the steps explained in Section 2.1. Wopt

projects the n − c dimensional input feature vector to the
c − 1 dimensional decision space. When a test image ar-
rives, it is first represented in a low dimensional form, and
then it is projected to the decision space using the projec-
tion matrix, Wopt, computed in the training stage. In de-
cision space, distances between the class mean vectors and
the test input are calculated. Finally, the identity of the indi-
vidual is assigned with the class label that has the minimum
distance.

2.3. Two-class linear discriminant analysis

In the two-class case the between class scatter matrix
is calculated by subtracting the mean values of the classes
from each other

SB = (m1 −m2)(m1 −m2)T . (5)

Recall that in the multi-class case only the general scatter is
taken into consideration, however, this does not guarantee
desired discrimination between all classes. Similar to the
multi-class case, again the goal is to find a projection di-
rection that maximizes the ratio of between-class scatter to
within-class scatter

wopt = argmaxW
|wT SBw|
|wT SW w|

, (6)

but this time, it’s a vector that provides the transformation.
If SW is non-singular, wopt can be computed by finding the
eigenvectors of the Equation 4. However, since SBwopt is
always in the direction of m1 − m2, it is not required to
compute the eigenvectors of S−1

W SB [1]. Instead, wopt can
be obtained using the equation below:

wopt = S−1
W (m1 −m2). (7)

2.4. Face recognition using two-class LDA

In two-class LDA, one of the classes contains face image
samples of an individual, whereas the other class contains
face image samples of the other individuals in the database.
To perform face recognition using two-class LDA, at first
the dimensionality of the input image should be reduced to
n − c to avoid the singularity of SW . Afterwards wopt

can be computed for each individual, then wopt projects
the n − c dimensional input feature vector to the one-
dimensional decision space. When a test image arrives, it
is first represented in a low dimensional form, and then it
is projected to each individual’s decision space, using the
corresponding projection vector, wopt,i, computed in the
training stage (here, the subscript i denotes the i-th class).
Classification can be done by calculating the distance be-
tween the value of the test input and the mean values of
the two classes for each projection. Three cases can be ob-
served in the classification step. In the first case, at only
one projected decision space, the value of the test input is
closer to the individual’s class than to the global class (the
class that contains face image samples of the other individ-
uals in the database). In this case we can simply choose this
class as the identity of the individual. In the second case,
the value of the test input is closer to an individual’s class in
more than one decision space. In this case, we choose the
candidate that has the highest confidence score. We define
the confidence score as the ratio of the distance between the



value of the test input and the global class mean to the dis-
tance between the value of the test input and the individual’s
class mean

conf(i) =
|mi,2 − xk|
|mi,1 − xk|

. (8)

In the third case, at none of the decision spaces the value
of the test input is closer to the individual’s class. If the
conducted experiment is close-set (if only the individuals in
the database are tested for identification), this case implies
the detection of an individual’s face image which contains a
different variation in appearance apart from the ones learned
from the training set. In this case, again using the proposed
confidence score, the individual that has the highest confi-
dence score is chosen as the identity of the individual. If the
conducted experiment is open-set (if the individuals who are
not in the database can also be tested), then this case may
also imply the detection of an unknown individual.

3. Experiments

Two experiments are conducted to observe the perfor-
mances of two-class LDA and multi-class LDA compara-
tively. Eigenfaces algorithm is also implemented as a base-
line system. In the Eigenfaces approach, nearest neighbor
classifier is used with the L1 norm as a distance metric,
since we have observed that it produces better results than
the L2 norm and cosine angle metrics.

3.1. Experiments on the Yale database

The Yale database [6] contains 165 face images of 15 in-
dividuals, where each individual has 11 face samples. Five
of these are used for training. The remaining six images
are used for testing. The face images are closely cropped
and scaled to 64x64 pixels resolution. Sample images are
shown in Fig. 1.

Fig. 2 illustrates the performances of the tested ap-
proaches with respect to varying dimensionality. In the
case of PCA, dimension is the dimension of the feature
vector used in classification, whereas in the case of multi-
class LDA and two-class LDA, it indicates the dimension
of the representation vector obtained by performing PCA
on the input image before the LDA step. The actual di-
mension of the feature vector used in classification is 14
in multi-class LDA and one in two-class LDA. From Fig.
2, it can be observed that both types of LDAs outperform
the Eigenfaces approach significantly. Two-class LDA per-
forms slightly better than the multi-class LDA, where there
is only 2.22% performance difference between the best clas-
sification scores of these two algorithms. PCA has a sta-
ble recognition rate with respect to dimension, on the other
hand multi-class LDA’s performance increases steadily with

the increased dimensionality. Two-class LDA also performs
better at high dimensions than at the lower dimensions. This
observation about LDA approaches indicate that at low di-
mensions both types of LDA are effected by the prior PCA
step where the most of the principal components are dis-
carded which can be beneficial at the classification step.

Figure 1. Samples from the Yale database.
First row: Samples from training set. Second
row: Samples from test set.

Figure 2. Correct recognition rate versus di-
mensionality plot -Yale database.

3.2. Experiments on the CMU PIE
database

The face database is built with the samples chosen
from the illumination and lights data sets of the CMU PIE
database [7]. It contains 1360 face images of 68 individuals.
Each individual has 20 face samples. 10 of these face sam-
ples are used for training and the remaining 10 face samples
are used for testing. The face images are aligned and scaled
to 64x64 pixels resolution. In Fig. 3, sample images from
training and testing are shown.



Figure 3. Samples from the CMU PIE
database. First row: Samples from training
set. Second row: Samples from test set.

Figure 4. Correct recognition rate versus di-
mensionality plot -CMU PIE database.

The performance curves of the approaches with respect
to varying dimensions are depicted in Fig. 4. The dimen-
sion is the dimension of the feature vector used in classifi-
cation in PCA, and the reduced dimension obtained by prior
PCA step in LDA approaches. The actual dimension of the
feature vector used in classification is 67 in multi-class LDA
and one in two-class LDA. As observed from the experi-
ments on the Yale database, again, both types of LDA ap-
proaches outperform Eigenfaces approach significantly as
long as the dimension is not very high. The performance
of both of the LDA approaches increases upto a certain di-
mension and than drops steadily. This indicates that at very
high dimensions (> 200), both of the LDA approaches suf-
fer from ”curse of dimensionality” where 10 samples for
training do not suffice to estimate the best projection direc-
tions for classification. This is a different observation from
the experiments on the Yale database where the dimension
is limited upto a small number (i.e. 60 in the case of multi-
LDA) due to limited number of training samples. The lower

performance scores at lower dimensions are again due to the
PCA bound imposed by the prior PCA step in the LDA ap-
proaches. As can be seen from Fig. 4, two-class LDA out-
performs multi-class LDA significantly at every dimension,
having a 10.29% absolute performance increase in terms of
obtained best classification scores. The increase in absolute
performance difference between the two approaches indi-
cates the two-class LDA’s success in handling high number
of classes.

4. Conclusions

We presented a novel face recognition approach based
on two-class LDA, where the traditional M-class LDA ap-
proach is converted to M 2-class classification problems.
This formulation provides the benefits of more discrimi-
nation between classes, simpler computation of projection
vectors and easier database update.

We tested the proposed algorithm on two separate
databases, one containing a low number of classes with
small amount of data that mainly consists of samples with
different facial expressions and one containing higher num-
ber of classes with relatively large amount of data that
mainly consists of face images under various illumination
conditions. In both of the experiments two-class LDA ap-
proach performs better than the multi-class LDA. The per-
formance difference becomes significant when the number
of classes increases. This shows that two-class LDA has
better discrimination capability than the multi-class LDA,
especially when the number of classes is high.

References

[1] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. John Wiley Sons, 1973.

[2] K. Fukunaga. Introduction to Statistical Pattern Recognition.
Academic Press, 1990.

[3] K. P. Juwei Lu and A. Venetsanopoulos. Face recognition
using lda based algorithms. IEEE Trans. on Neural Networks,
14(1), 2003.

[4] D. Loog and Haeb-Umbach. Multiclass linear dimension re-
duction by weighted pairwise fisher criteria. IEEE Trans. on
PAMI, 23(7), 2001.

[5] A. M. Martinez and A. C. Kak. Pca versus lda. IEEE Trans.
on PAMI, 23(2), 2001.

[6] J. H. P.N. Belhumeur and D. Kriegman. Eigenfaces vs. fish-
erfaces: Recognition using class specific linear projection.
IEEE Trans. on PAMI, 19(7):711–720, 1997.

[7] T. Sim, S. Baker, and M. Bsat. The CMU pose, illumina-
tion, and expression (PIE) database. In Proc. of Intl. Conf. on
Automatic Face and Gesture Recognition, 2002.

[8] M. Turk and A. Pentland. Eigenfaces for recognition. Journal
of Cognitive Science, pages 71–86, 1991.

[9] H. Yu and J. Yang. A direct lda algorithm for high di-
mensional data with application to face recognition. Pattern
Recognition, 34, 2001.


