
 

 

Abstract 
 

In this paper, we present a detailed analysis of multi-

modal fusion for person identification in a smart 

environment. The multi-modal system consists of a video-

based face recognition system and a speaker identification 

system. We investigated different score normalization, 

modality weighting and modality combination schemes 

during the fusion of the individual modalities. We 

introduced two new modality weighting schemes, namely, 

the cumulative ratio of correct matches (CRCM) and 

distance-to-second-closest (DT2ND) measures. In 

addition, we also assessed the effects of the well-known 

score normalization and classifier combination methods 

on the identification performance. Experimental results 

obtained on the CLEAR 2007 evaluation corpus, which 

contains audio-visual recordings from different smart 

rooms, show that CRCM-based modality weighting 

improves the correct identification rates significantly.  

1. Introduction 

Biometric person identification problem has attracted 

significant research efforts that have been mainly fueled by 

security applications. Recently, person identification for 

smart environments has become another application area 

of significant interest [1,2,3]. Sample application areas can 

be a smart video-conferencing system that can recognize 

the speaker; a smart lecture or meeting room, where the 

participants can be identified automatically and their 

behaviors can be analyzed throughout the meeting or the 

lecture. As can be expected, this group of applications 

requires identification of people naturally under 

uncontrolled conditions. 

Among the biometric person identification methods, 

face recognition and speaker identification are known to 

be the most natural ones, since the face and voice 

modalities are the modalities we use to identify people in 

our daily lives. However, doing face recognition or 

speaker identification in a smart room poses many 

challenges. In terms of face recognition,  there is no 

cooperation of the subjects being identified, there are no     

constraints on head-pose, illumination conditions, use of 

accessories, etc. Moreover, depending on the distance 

between the camera and the subject, the face resolution 

varies, and generally the face resolution is low. In terms of 

speaker identification, again, there is no cooperation, and 

the system should handle a large variety of speech signals, 

corrupted by adverse environmental conditions such as 

noise, background, and channel. The only factors that can 

help to improve the person identification performance in 

smart rooms are the video data of the individuals from 

multiple views provided by several cameras and the multi-

channel speech signal provided by microphone arrays that 

are mounted in the smart room. Furthermore, with the 

fusion of these modalities, the correct identification rates 

can be improved further. A sample smart room layout and 

sample images from different smart rooms are shown in 

Figures 1 and 2. 
 

 
 

Figure 1. A smart room layout. 
 

In this paper, in order to obtain a robust person 

identification system, we investigate in detail the multi-

modal fusion strategies for person identification in a smart 

room environment. For score normalization, we compare 

the min-max [4] and hyperbolic tangent methods [4,5]. For 

modality weighting, we introduce two new schemes, 

namely, the cumulative ratio of correct matches (CRCM)  
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Figure 2. Sample images from different smart rooms. 

 

and distance-to-second-closest (DT2ND) measures which  

are based on the separability of the best two matches. The 

classifiers are combined using the sum rule, product rule 

and max rule approaches [6]. We conduct experiments on 

a data corpus that has been collected at different smart 

rooms. The experimental results indicate that the CRCM 

modality weighting approach provides a significant 

increase in the correct identification rate. 

The organization of the paper is as follows. In Section 

2, the individual face recognition and speaker 

identification systems are explained briefly, and the 

utilized fusion approaches are described. Experimental 

results are presented and discussed in Section 3. Finally, in 

Section 4, conclusions are given.  

2. Methodology 

In this section, we briefly explain the single modality 

person identification systems and list the investigated 

fusion strategies. 

2.1. Video-based Face Recognition 

The face recognition system is based on the local 

appearance-based models and it processes multi-view 

video data provided by four fixed cameras. In the training 

stage all the images from all the cameras are put together. 

Although the manual annotations of the images are 

available in the database, due to the low resolution of face 

images these manual labels might be imprecise. In order to 

prevent the registration errors that can be caused by these 

imprecise labels, 24 additional samples are also generated 

by modifying the manual face bounding box labels by 

moving the center of the bounding box by 1 pixel and 

changing the width or height by ±2 pixels.  

The feature extraction step follows the approach in 

[7,8], which performs block-based discrete cosine 

transform (DCT) to non-overlapping blocks of size 8×8 

pixels. The obtained DCT coefficients are then ordered 

according to the zig-zag scan pattern. The first coefficient 

is discarded for illumination normalization as suggested in 

[7] and the remaining first ten coefficients in each block 

are selected in order to create compact local feature 

vectors. Furthermore, robustness against illumination 

variations is increased by normalizing the local feature 

vectors to unit norm [8]. The global feature vector is 

generated by concatenating the local feature vectors. 

Afterwards, these global feature vectors are clustered in 

order to realize real-time classification with a nearest 

neighbor classifier. 

In the testing stage, at an instant, all four camera views 

are compared to the representatives in the database. Their 

distances are converted to confidence scores using min-

max normalization [4], 
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where, s corresponds to a distance value of the test image 

to one of the training images in the database, and S 

corresponds to a vector that contains the distance values of 

the test image to the ten best matches among the training 

images. The division is subtracted from one, since the 

lower the distance is, the higher the probability that the test 

image belongs to that identity class. This way, the score is 

normalized to the value range of [0,1], closest match 

having the score “1”, and the furthest match having the 

score “0”. To have equal contribution of each frame, these 

scores are re-normalized by dividing them to the sum of 

their values. We weight each frame using the distance-to-

second-closest (DT2ND) metric. In a previous study [9], it 

has been observed that the difference of the distances, x, 

between the closest and the second closest training 

samples is generally smaller in the case of a false 

classification than in the case of a correct classification. It 

has been found that the distribution of these distances 

resembles an exponential distribution: 
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The weights are then computed as the cumulative 

distribution function: 
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The obtained confidence scores are summed over 

camera-views and over image sequence. The identity of 

the face image is assigned as the person who has the 

highest accumulated score. 

 



 

 

2.2. Speaker Identification 

The speaker identification system is based on Gaussian 

mixture models (GMM) of mel frequency cepstral 

coefficients (MFCC) [10,11]. Feature warping and 

reverberation compensation are applied on MFCC in order 

to improve robustness against channel mismatch. Our 

reverberation compensation approach uses a different 

noise estimation compared to the standard spectrum 

subtraction approach [12]. The feature warping method 

warps the distribution of a cepstral feature stream to a 

standardized distribution over a specified time interval 

[12,13,14]. The identification decision is made as follows:  
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where s is the identified speaker and ( )iYL Θ   is the 

likelihood that the test feature set Y was generated by the 

GMM iΘ  of speaker i, which contains M weighted 

mixtures of Gaussian distributions 
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where X is the set of training feature vectors to be 

modeled, S is the total number of speakers, M is the 

number of Gaussian mixtures, mλ , mU , and mΣ  are the 

weight, mean, and diagonal covariance matrix of the m
th

 

Gaussian distribution.  

As there are 64 channels for each speech recording, we 

train GMMs for each speaker on each of the 64 channels. 

We randomly select channel 7 as the test channel. We 

apply the “frame-based score competition (FSC)” 

approach when computing the likelihood scores of test 

features given a speaker with 64 GMMs. The idea of the 

FSC approach is to use the set of multiple GMM models 

rather than a single GMM model. A multiple microphone 

setup emits speech samples from multiple channels. As a 

consequence, we can build multiple GMM models for each 

speaker k, one for each channel i and refer to it as 
Chik ,Θ . 

For a total number of 64 channels we get 

},,{ 64,1, ChkChkk ΘΘ=Θ L  models for speaker k. In each 

frame we compare the incoming feature vector of channel 

Ch7 to all GMMs },,{ 64,1, ChkChk ΘΘ L  of speaker k. The 

highest log likelihood score of all GMM models is chosen 

to be the frame score. Finally, the log likelihood score of 

the entire test feature vector set X from channel h is 

estimated as:  
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This competition process based on multiple channels 

differs from the standard scoring process based on one 

channel in that the per-frame log likelihood scores are not 

necessarily derived from the same microphone. 

2.3. Fusion 

We investigated the effects of three main steps of the 

fusion process. They are: Score normalization, modality 

weighting and modality combination.  

Score normalization is the first step in the process of 

modality fusion. Due to the different ways of feature 

extraction and classification, the distribution of the 

resulting scores may differ between the modalities. In our 

case, the face recognition system generates accumulated 

min-max normalized scores, whereas the speaker 

identification system provides likelihood scores. In order 

to combine these scores, we utilized and compared two 

well-known normalization methods, namely the min-max 

and hyperbolic tangent normalization methods. The min-

max normalization is the normalization method we also 

used to transform the distance values to the normalized 

confidence scores in the face recognition system and can 

be calculated as in Equation 1 without the need of 

subtracting the obtained division value from one, since the 

modality scores are directly proportional to the modality 

confidences. Hyperbolic tangent normalization non-

linearly maps the confidence scores to the (0,1) range and 

is calculated as, 
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where, nc denotes normalized confidence score, c denotes 

confidence score of an identity candidate in the database, 

and C denotes the vector that contains the confidence 

scores of all the identity candidates in the database. 

Modality weighting is the second step in the fusion 

process. In this study, we introduced a new adaptive 

modality weighting scheme based on the separation of the 

best two matches. It is named as cumulative ratio of 

correct matches (CRCM) and utilizes a non-parametric 

model of to the distribution of the correct matches with 

respect to the confidence differences between the best two 

matches. It relies on the observation that the difference of 

the confidences between the closest and the second closest 

training samples is generally smaller in the case of a false 

classification than in the case of a correct classification. 

The greater the confidence difference between the best two 

matches is, the higher the weight the individual modality 

receives. Figures 3 and 4 show the obtained correct match 

distribution over the confidence differences and the 

corresponding weighting model for the face recognition 

system, respectively. This weighting model has been 



 

 

computed on a validation set by taking the cumulative sum 

of the number of correct matches achieved at a confidence 

difference between the best two matches.  

 

 
 

Figure 3. The distribution of the correct matches. 

 

 
 

Figure 4. The weighting model. 

 

As a second way of modality weighting, we adapted the 

DT2ND to modality fusion, by simply using the 

confidence differences instead of using the differences 

between the normalized distance scores in Equation 3. In 

addition to the adaptive modality weighting schemes, we 

also took into account the individual correct identification 

rate of each modality that is obtained on the validation set 

and assigned fixed weights to the modalities according to 

their performance. 

Finally, we combined the modalities using the well-

known classifier combination methods: Sum rule, product 

rule and max rule [6].  

3. Experiments 

The experiments have been conducted on a database 

that has been collected by the CHIL consortium [15] for 

the CLEAR 2007 evaluations [16]. The recordings are 

from lecture-like seminars and interactive small working 

group seminars that have been held at different CHIL sites: 

AIT, Athens, Greece, IBM, New York, USA, ITC-IRST, 

Trento, Italy, UKA, Karlsruhe, Germany and UPC, 

Barcelona, Spain. Sample images from the recordings can 

be seen in Figure 2. The used data for the identification 

task consists of short video sequences of 28 subjects, 

where the subject is both speaking and visible to the 

cameras at the same time. The recording conditions are 

uncontrolled, and depending on the camera view and the 

position of the presenter/participant, low resolution faces 

ranging between 10 to 50 pixels resolution are acquired. 

Two different training and four different validation/testing 

durations are used in the experiments as presented in Table 

1. Identity estimates are provided at the end of each test 

sequence duration using the available audio-visual data.  

 

Table 1. Duration and number of the training, validation 

and testing sequences. 
 

Sequence ID Sequence 

Duration (sec) 

No. of 

Sequeces 

Train A 15 28 

Train B 30 28 

Validation 1 1 560 

Validation 2 5 112 

Validation 3 10 56 

Validation 4 20 28 

Test 1 1 2240 

Test 2 5 448 

Test 3 10 224 

Test 4 20 112 

 

In the database, face bounding box labels are available 

every 200 ms. We only used these labelled frames for the 

experiments. The face images are cropped and scaled to 

40x32 pixels resolution. They are then divided into 8x8 

pixels resolution non-overlapping blocks making 20 local 

image blocks. From each image block ten-dimensional 

DCT-based feature vectors are extracted as described in 

Section 2.1 and they are concatenated to construct the final 

200-dimensional feature vector. The classification is 

performed using a nearest neighbor classifier. The L1 

norm is selected as the distance metric, since it has been 

observed that it consistently gives the best correct 

recognition rates when DCT-based feature vectors are 

used.  

13-dimensional MFCC, with feature warping and 

reverberation compensation applied, is extracted from the 



 

 

speech signal as the speaker feature. We trained a GMM 

with 32 mixtures for each speaker using the expectation-

maximization (EM) algorithm under the 30 seconds 

training condition and 16 mixtures for each speaker under 

the 15 seconds training condition. The classification is 

performed as described in Section 2.2. 

3.1. Experiments on the Validation Set 

The false identification rates of the face recognition and 

speaker identification systems obtained on the validation 

set are presented in Table 2. In the table, each row shows 

the results for a different training-testing duration 

combination. The letter indicates whether the training is 

from set A or B which corresponds to 15 and 30 second 

training durations, respectively. The number indicates the 

duration of the testing segment in seconds. As expected, as 

the duration of training or testing increases the false 

identification rate decreases. Both systems achieve 100% 

correct identification when the systems are trained with 30 

seconds of data and tested with the sequences of 20 

seconds duration. Face recognition is found to be 

significantly superior to speaker identification at the other 

training-testing duration combinations. 

These results are used to determine the fixed weights 

that each modality receives. It is done in two different 

ways. The first way is by determining the weights directly 

proportional to the correct identification rates. For 

example, if the face recognition system has 100% and the 

speaker identification system has 85% correct 

identification rates, then they are weighted by 1 and 0.85 

respectively for that training-testing duration combination. 

The second way is by determining the weights indirectly 

proportional to the false identification rates. For instance, 

if the face recognition system has 5% and the speaker 

identification system has 10% false identification rates, 

then the face recognition system receives twice as much 

weight than the speaker identification system. 

 

Table 2. False identification rates of the individual 

modalities on the validation set. 
 

 Face Reco. (%) Speaker Id. (%) 

 A1 8.6 43.6 

 A5 0.9 32.1 

 A10 0.0 10.7 

 A20 0.0 7.1 

 B1 5.7 38.9 

 B5 0.0 15.2 

 B10 0.0 1.8 

 B20 0.0 0.0 

3.2. Experiments on the Test Set 

The false identification rates of the face recognition and 

speaker identification systems obtained on the test set are 

given in Table 3. Similar to the obtained results on the 

validation set, as the duration of training or testing 

increases the false identification rate decreases. As can be 

noticed, on the test set the speaker identification performs 

as well as or even better than the face recognition at longer 

duration test segments. In the case of fixed modality 

weighting, this implies that the validation set is misleading, 

since on the validation set face recognition has been found 

to be more successful at these segments. The other 

observation that can be derived by comparing Tables 2 and 

3 is the higher false identification rates obtained on the 

testing set. The main reason is that the time gap between 

the training set and test set is greater than the time gap 

between the training and validation set. 
 

Table 3. False identification rates of the individual 

modalities on the test set. 
 

 Face Reco. (%) Speaker Id. (%) 

 A1 15.4 58.1 

 A5 9.2 30.4 

 A10 6.7 8.0 

 A20 5.4 3.6 

 B1 10.7 58.8 

 B5 5.6 21.7 

 B10 5.4 3.6 

 B20 3.6 0.9 

3.3. Fusion Experiments 

In the following subsections, we examine the steps of  

the fusion process.  
 

3.3.1 Comparison of Score Normalization Methods 
 

In the first fusion experiment, we compared the min-

max and hyperbolic tangent score normalization methods. 

For modality weighting, we used the fixed weights which 

are directly proportional to the correct identification rates 

obtained on the validation set. We used the sum rule for 

classifier combination. The resulting false identification 

rates are shown in Table 4. As can be observed, there is no 

significant performance difference between using min-max 

or hyperbolic tangent methods for score normalization. 

Although, we used a very primitive fixed weighting 

scheme for this experiment, in most of the training-testing 

duration combinations the false identification rates are 

lower than the ones obtained by the individual modalities. 
 

 

 

 



 

 

Table 4. Results of min-max and hyperbolic tangent score 

normalization methods. 
 

 min-max tanh 

 A1 15.2 14.2 

 A5 8.9 8.3 

 A10 5.8 4.9 

 A20 5.4 5.4 

 B1 10.2 9.6 

 B5 5.1 4.0 

 B10 4.5 3.1 

 B20 2.7 1.8 

 
3.3.2 Comparison of Modality Weighting Methods 
 

In the second fusion experiment, we analyzed the 

modality weighting schemes. We first compared the fixed 

weighting schemes at which the weights are either directly 

proportional to the correct classification rate or indirectly 

proportional to the false identification rate obtained on the 

validation set. These fixed modality weighting schemes are 

named as DPC and IPF respectively. The results are 

presented in Table 5. As already mentioned in Section 

3.3.1, even with these primitive weights, in most of the 

training-testing duration combinations the false 

identification rates are lower than the ones obtained by the 

individual modalities.  

 

Table 5. Results of fixed weighting schemes. 
 

 DPC IPF 

 min-max tanh min-max Tanh 

A1 15.2 14.2 15.4 15.2 

A5 8.9 8.3 9.2 9.2 

A10 5.8 4.9 6.7 6.7 

A20 5.4 5.4 5.4 5.4 

B1 10.2 9.6 10.6 10.1 

B5 5.1 4.0 5.6 5.6 

B10 4.5 3.1 5.4 5.4 

B20 2.7 1.8 2.7 1.8 

 

The results with the more sophisticated adaptive 

modality weighting schemes are given in Table 6. 

Compared to the Table 5, CRCM provides a significant 

drop in false identification rates. Although DT2ND has not 

been specifically designed for modality weighting, it still 

provides slightly better results. Note that, in terms of 

performance of each modality, the validation set was not 

quite representative. As we have seen, under some 

training-testing duration combinations, face recognition 

was found superior than speaker identification on the 

validation set, but on the test set, it was the opposite. 

Therefore, performance based fixed weighting can be 

misleading. On the other hand the results obtained by 

CRCM indicates that  confidence differences are more 

robust cues for modality weighting. 

 

Table 6. Results of adaptive weighting schemes. 
 

 CRCM DT2ND 

 min-max tanh min-max tanh 

A1 13.7 19.0 15.3 14.2 

A5 6.5 8.3 8.9 7.4 

A10 1.8 2.7 6.7 5.4 

A20 0.9 1.8 5.4 5.4 

B1 10.4 15.3 10.4 10.0 

B5 2.7 3.1 5.4 5.1 

B10 1.3 0.9 5.4 4.0 

B20 0.9 0.0 2.7 1.8 

 

We also tried combining the fixed weights with the 

adaptive weights. However, as can be observed from Table 

7, there is no significant performance difference between 

the CRCM and DPC+CRCM results. The performance 

degrades with IPF + CRCM. The reason is the hard 

modality weighting in IPF. Since, on the validation set at 

some training-testing duration combinations, face 

recognition reached 0% false identification rate, at these 

combinations only the face recognition system’s decision 

is trusted. 

 

Table 7. Results of combined CRCM and fixed weighting 

schemes. 
 

 DPC + CRCM IPF + CRCM 

 min-max tanh min-max tanh 

A1 13.3 16.8 13.3 13.5 

A5 6.5 7.1 8.3 7.1 

A10 1.8 2.2 6.7 6.7 

A20 0.9 1.8 5.4 5.4 

B1 10.1 12.8 10.1 10.3 

B5 2.7 3.1 5.6 5.6 

B10 1.3 0.9 5.4 5.4 

B20 0.9 0.0 0.9 0.0 

 

Table 8. Results of combined DT2ND and fixed weighting 

schemes. 
 

 DPC + DT2ND IPC + DT2ND 

 min-max tanh min-max tanh 

A1 15.4 14.7 15.4 15.1 

A5 8.9 8.0 9.2 8.9 

A10 6.7 5.4 6.7 6.7 

A20 5.4 5.4 5.4 5.4 

B1 10.5 9.8 10.6 10.1 

B5 5.4 5.1 5.6 5.6 

B10 5.4 4.0 5.4 5.4 

B20 2.7 1.8 2.7 1.8 



 

 

3.3.3 Comparison of Classifier Combination Methods 
 

Finally, we combined the weighted scores using the sum 

rule, product rule and max. rule. From Table 9, it can be 

seen that the max. rule operates better on the min-max 

normalized confidence scores. Sum rule and max rule are 

found to perform slightly better than the product rule. 

However, no big difference is observed in the false 

identification rates.  

 

Table 9. Results of classifier combination methods. 
 

 Sum Rule Product Rule Max. Rule 

 min-

max 

tanh min-

max 

tanh min-

max 

tanh 

A1 13.3 16.8 13.3 13.2 15.2 31.2 

A5 6.5 7.1 7.4 7.4 7.8 16.5 

A10 1.8 2.2 4.5 4.5 2.2 6.2 

A20 0.9 1.8 4.5 4.5 0.9 2.7 

B1 10.1 12.8 9.6 9.3 11.8 27.3 

B5 2.7 3.1 3.8 3.8 3.8 10.9 

B10 1.3 0.9 2.7 3.1 0.9 2.2 

B20 0.9 0.0 1.8 1.8 0.0 0.0 

 

4. Conclusions 

In this paper, we presented a detailed analysis of multi-

modal fusion for person identification in a smart 

environment. We found no significant performance 

difference between well-known score normalization or 

classifier combination approaches. We observed that the 

modality weighting has the major impact on the correct 

identification rate. We proposed an adaptive modality 

weighting model that is derived from the confidence 

differences between the best two matches. It is named as 

cumulative ratio of correct matches (CRCM) and the 

weighting model is computed by taking the cumulative 

sum of the number of correct matches achieved at a 

confidence difference between the best two matches. In 

Table 10, the false identification rates of the individual 

modalities and the multi-modal system are listed. The 

multi-modal system included in the table uses min-max 

normalized confidence scores, CRCM modality weighting 

and the sum rule. From the table, it is clear that multi-

modal fusion significantly improves the performance 

compared to each of the single modalities. This also 

indicates that the face and voice modalities are 

complementary biometric traits. 

 

 

 

 

 

 

Table 10. Results of individual modalities and the multi-

modal system. 
 

 Face Reco. (%) Speaker Id. (%) Fusion (%) 

A1 15.4 58.1 13.7 

A5 9.2 30.4 6.5 

A10 6.7 8.0 1.8 

A20 5.4 3.6 0.9 

B1 10.7 58.8 10.4 

B5 5.6 21.7 2.7 

B10 5.4 3.6 1.3 

B20 3.6 0.9 0.9 
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