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Abstract

In this paper, we present the classification sub-system
of a real-time video-based face identification system which
recognizes people entering through the door of a labora-
tory. Since the subjects are not asked to cooperate with
the system but are allowed to behave naturally, this appli-
cation scenario poses many challenges. Continuous, un-
controlled variations of facial appearance due to illumina-
tion, pose, expression, and occlusion need to be handled
to allow for successful recognition. Faces are classified
by a local appearance-based face recognition algorithm.
The obtained confidence scores from each classification
are progressively combined to provide the identity estimate
of the entire sequence. We introduce three different mea-
sures to weight the contribution of each individual frame
to the overall classification decision. They are distance-
to-model (DTM), distance-to-second-closest (DT2ND), and
their combination. Both a k-nearest neighbor approach and
a set of Gaussian mixtures are evaluated to produce individ-
ual frame scores. We have conducted closed set and open
set identification experiments on a database of 41 subjects.
The experimental results show that the proposed system is
able to reach high correct recognition rates in a difficult
scenario.

1. Introduction
Perceptual computer systems which are developed in or-

der to create smart environments (homes, cars) need to fol-
low human interaction patterns in order to allow comfort-
able usage. These environments are supposed to give ben-
efits to the users and support their interaction among each
other. The users must be in focus of attention, not the com-
puter system which supplies certain functionality. In such
environments, it is essential that the computer system is able
to identify the people it is dealing with.

A feasible approach to biometric identification is the use

of facial features. Alongside speech, it is a very natural
approach and mimics human recognition. The nature of
the cue inherently allows for unobtrusive, interaction-free
recognition, as the visibility of the face does not need any
specific action. This property is indispensable in smart en-
vironments, as the necessity of indiviuals to explicitly co-
operate with the system (e.g. by putting a finger on a fin-
gerprint scanner) violates the central idea of such environ-
ments, since it interrupts a user’s actions and moves the
computer system into the focus of attention.

1.1. Previous work

Numerous approaches have been developed to recognize
faces. While the main focus was on image-based methods
in the beginning [17, 2, 7], it shifted more and more towards
video-based approaches in the last years. These are devel-
oped in order to overcome shortcomings of image-based
recognizers like sensitivity to low resolution, pose varia-
tions and partial occlusion.

Zhou et al. [19] use sequence importance sampling (SIS)
to propagate a joint posterior probability distribution of
identity and motion over time to do tracking and recognition
of a person simultaneously. To overcome continous changes
of head pose and facial expressions, Lee et al. [10] represent
the appearance of a person by the means of pose manifolds
which are connected by transition probabilities. In order to
model person-specific appearance and dynamics, Liu and
Chen [12] train individual hidden Markov models (HMM)
on eigenface image sequences. Confident classifications are
used to adapt these models.

The problem with models that are based on probability
distributions is that they make strong assumptions about un-
derlying distributions in the training set. A model may im-
plicitly learn dependencies which are not characteristic for
the data, if the training set turns out not to be representa-
tive. The counterpart are exemplar-based approaches which
generally do not assume an underlying distribution and are,
thus, less affected by non-representative training data.
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A large variety of head pose and illumination variations,
as well as occlusion, is encountered in feature films. Arand-
jelovic and Zisserman [1] built a system to retrieve all faces
from a film that match one or multiple query images. The
appearance-based approach uses a modified Euclidean dis-
tance for classification. Instead of doing frame-based re-
trieval, Sivic et al. [14] group all face views of a person
within the same shot into a face-track, represented as a his-
togram. Given a query image in one of the scenes, the corre-
sponding face-track is determined. All matching face-tracks
are retrieved from the whole film by means of a chi-square
goodness-of-fit test..

Face recognition systems that are to be deployed in a
real-life scenario, usually encounter the problem that they
are confronted with unknown people. Li and Wechsler [11]
make use of transduction to derive a rejection criterion. The
k-nearest neighbors of a test sample are iteratively misclas-
sifed to determine an error distribution. If classification of
the test sample as any of the classes does not yield a cred-
ibility sufficiently different from this distribution, it is re-
jected, otherwise it is classified.

1.2. Motivation

Our central goal is to build a real-time capable face
recognition system (FRS) for uncontrolled environments. It
is supposed to handle robustly real-life situations with all
the challenges they bring along that make the task harder.
The central challenge is to achieve unobtrusive recognition,
i.e. to create a system that operates in the background and
does not need specific user interaction. This is essential to
grant users the freedom to behave naturally. As a conse-
quence of this freedom, difficulties arise from varying pose,
like out-of-plane rotations, and different facial expressions.
Accessories and facial hair can cause partial occlusions.
Daylight leads to very different illumination depending on
the time of day, time of year and weather conditions. In
spite of this hardly controllable natural influences, even the
artificial light sources are withdrawn from the system’s con-
trol if unobtrusive recognition as postulated above is to be
implemented. Since the users, i.e. the persons to be recog-
nized, are not supposed to be restrained by the system, they
are free to switch on and off any light sources that might
be available. This leads to a wide variety of illumination
configurations in terms of light intensity, direction and even
color.

In the given scenario, a camera opposite the entrance
door to a computer laboratory records people entering the
room. As outlined above, they are not explicitly cooperat-
ing, and recording conditions can vary largely. Some exam-
ple views are shown in Figure 11.

1A demo video can be found at http://isl.ira.uka.de/
∼ekenel/door\ monitoring.mpg

Figure 1. Exemplary recognition situations showing a variety of
different lighting, pose and occlusion conditions. No individual

explicitly looks into the camera.

1.3. Our approach

The scenario outlined above leads to large variations of
“quality” between frames. As we will show, a single frame
might not be distinctive enough to allow a clear classifica-
tion, but it usually still holds enough information that a clas-
sifier can get close to the correct decision. Therefore, we
use a video-based approach to face identification by pro-
gressively combining the individual frame-based classifica-
tion results to one score per sequence.

The different variations of facial appearance entail that
some frames are more ambiguous than others. Therefore,
two main observations are exploited to derive two different
schemes to weight the contribution of each individual frame
to the overall classification result. The first, distance-to-
model (DTM), takes into account how similar a test sample
is to the representatives of the training set. Test samples that
are very different from the training data will generally pro-
duce larger distances than more similar data. Consequently,
they are more likely to cause a misclassification. DTM is
used to reduce the impact of these samples on the final
score. The second weighting scheme, distance-to-second-
closest (DT2ND), reduces the impact of frames which de-
liver ambiguous classification results. It is based on the
same idea as in [13] that reliable matching requires the best
match to be significantly better then the second-best match
(speaking of classes). Other than Lowe [13], we do not dis-
card “bad” matches (in terms of distance or score) but only
reduce their contribution. As we will show, both DTM and
DT2ND have different positive effects on the classification
results and the combination of the two schemes can improve
the performance further.

Individual frame scores are generated with a k-nearest
neighbor classifier and a set of Gaussian mixture models.
Although the weighting functions have to be computed sep-



Figure 2. Sample aligned face images

arately for both classifiers due to different classifier output,
their structure is the same.

The remainder of this paper is organized as follows. De-
tails about the feature extraction and classification steps,
including the introduction of the weighting schemes, are
given in Section 2. Our approach is evaluated in Section 3.
Section 4 finishes the paper with a conclusion and future
directions.

2. Face recognition

Faces in the input sequences are detected, tracked and
registered as described in [16]. Figure 2 shows some sample
images of aligned faces. They suffer from strong variations
in illumination, pose, expression and resolution. Further-
more, some of them are blurry due to interlacing effects and
movement of the subject. Although there are no occlusion
examples in Figure 2, they can be anticipated from the sam-
ples in Figure 1.

Feature extraction follows the approach in [5] which ap-
plies block-based DCT to non-overlapping blocks of size
8×8 pixels. DCT was chosen for its compact representation
of the input signal and the data-independency of its basis
functions. Besides, its fast computation helps processing in
real-time applications. The first five AC coefficients in each
block are selected in order to create compact local feature
vectors. The DC coefficient is discarded for illumination
normalization as suggested in [5]. Furthermore, robustness
against illumination variations is increased by normalizing
the local feature vectors to unit norm [6]. This reduces il-
lumination effects (especially illumination differences with
a gradient pattern) while keeping the essential frequency
information. Concatenation yields a global feature vector.
Both a discriminative and a generative approach are fol-
lowed to classifiy the so-achieved feature vectors. With both
approaches, individual models are derived for each person.
The granularity of these models depends on the respective
amount of available training data. This accounts for the fact
that the real-life data collection setting leads to largely vary-
ing amounts of data among the different persons. Thus, the
more often the system encounters a certain individual, the
more detailed this individual’s model will be, as more vari-
ation can be captured.

2.1. K-nearest neighbors model

A major advantage of discriminative approaches like K-
nearest neighbors (KNN) is that they do not make an as-
sumption about the distribution of the underlying data. This
allows to build meaningful models with less data than would
be necessary to train high-dimensional generative models
like Gaussian mixtures. To determine the nearest neighbors,
the L1 norm is employed as distance measure d(·, ·), as it
was shown to perform best among several popular distance
metrics in [6]. The k closest neighbors Si, i = 1, 2, . . . , k
of a test vector x are selected with score si = d(x, Si). Be-
cause the distances and, thus, the resulting scores can differ
largely between frames, they need to be normalized. This is
achieved with linear min-max normalization [15],

s′i = 1− si − smin

smax − smin
i = 1, 2, . . . , k (1)

which maps the scores to [0, 1]. To have equal contribution
of each frame, these scores are re-normalized to

∑k
i=1 s′i =

1. Of course, among the k closest representatives, there
can be several ones from the same class. Since some peo-
ple have far fewer representatives than others, care must be
taken that their scores are not dominated by those. Individ-
ual scores are selected by a simple max-rule [9], which only
selects the maximum score for each class.

2.2. Gaussian mixture model

Although generative models, in our case Gaussian mix-
ture models (GMM), usually require more training data than
discriminative ones, they allow to model the data with prob-
ability density functions (pdf), and, as a consequence, the
computation of conditional pdfs.

The Gaussian mixture model approach trains one GMM
per class using an expectation-maximization algorithm [3,
18]. Likewise the KNN model, the number of components
per mixture depends on the number of training samples
available for a person. At runtime, person x is classified
as one of the N registered individuals in a maximum log-
likelihood manner using

arg max
i∈N

log P (x|i) =

arg max
i∈N

log
ki∑

j=1

αij · N (x;µij ,Σij) (2)

where ki denotes the number of modes per person, αij the
mixing parameters, and µij and Σij the mean and the vari-
ance of the j’s component of person i’s model, respectively.
To keep the computational effort within reasonable bounds,
only a diagonal rather than the full covariance matrix is
used.



For the weighting scheme approach, a distance measure
in terms of a similarity measure is necessary. It is defined
as d(x, i) = | log P (x|i)|, i ∈ N (see Equation (2)).

2.3. Temporal fusion: Weighting schemes

A sum-rule [9] decision fusion scheme is employed to
take advantage of all frames in a video sequence to de-
cide on the identity of a subject. Two baseline perfor-
mances are determined. First, every single frame is eval-
uated individually to be able to evaluate the improvement
contributed by video-based classification. Second, the base-
line video-based recognition performance is determined by
simply adding the scores of all frames. The decision is then
made based on the min-max-normalized final score. Due to
the real-life quality of the data, however, not all frames are
suitable to classify the subject. Low resolution, large occlu-
sion and faulty alignment are examples of negative influ-
ences on frame quality. Besides, certain views of a person
may simply not be captured by the model due to little train-
ing data or due to training data that contains too little vari-
ation. Two important observations have been made which
are exploited in order to reduce the impact of ambiguous
frames.

First, for wrong classifications, the distance to the closest
representative is, on average, larger than for correct ones.
Moreover, badly aligned frames result in larger distances
as well. To account for this, we introduce the weight-
ing scheme distance-to-model (DTM). The frames fi, i =
1, 2, . . ., are weighted with respect to the closest represen-
tative c with

wDTM(fi) =

{
1 if d(fi, c) < µ

e−
d(fi,c)−µ

2σ2 otherwise
(3)

This weighting function is chosen according to the observed
distribution of frame distances d(fi, cfi,correct), the distances
of all frames fi to the closest representative cfi,correct of the
corresponding correct class. The distribution, determined
on a parameter estimation set, resembles a normal distribu-
tion N (·;µ, σ2) (in the GMM case, there is an additional
peak close to zero). To increase robustness against outliers,
µ is chosen as sample median and σ as median absolute de-
viation (MAD)[8]. Example distributions and weight func-
tions are shown in Figure 3. Using the weight function
wDTM, the influence of frames which are not sufficiently
close to the model is reduced.

The second observation is that, in case of misclassifica-
tion of frame fi, the difference of the distances ∆(fi) to the
closest and the second closest representatives is generally
smaller than in the correct case. The distribution of these
distances follows approximately an exponential distribution

ε(x;λ) = λe−λx (4)

The weights are then computed as the cumulative distribu-
tion function of ε(·)

wDT2ND(fi) = E(∆(fi)) = 1− e−λ∆(fi) (5)

Again, example distributions and weight functions are
shown in Figure 4.

This weighting scheme will be referred to as distance-to-
second-closest (DT2ND).

In addition to individual weighting schemes, a joint
weighting scheme employs the product of wDTM and
wDT2ND to weight the frames.

3. Experiments
We allow the subjects who are to be identified to behave

naturally without the need to cooperate with the recogni-
tion system. For this reason, the input data will cover a
much larger bandwidth of appearance variations in terms
of illumination, pose and occlusion than publicly available
databases, which furthermore usually consist of still im-
ages. Consequently, we needed to collect our own data.

Our database consists of 2,292 video sequences (205,480
frames) of 41 subjects recorded during 6 months. It is
chronologically divided into three sets for training, parame-
ter estimation and testing. The separation by date accounts
for the fact that people change appearance over time. Be-
sides the fact that unaware recording of large amounts of
video data is not trivial, we think that 41 subjects consitute
a solid base for smart environments. In those, it is impor-
tant to cover the “core” set of people, e.g. the inhabitants of
a smart house.

Face images were automatically extracted from training
sequences using the registration process outlined in [16].
Training data is augmented with virtual samples at different
scales and slight rotations to increase the amount of training
data and reduce effects of registration errors. The augmen-
tation leads to a very large training set which, consequently,
would slow down the KNN approach. Since many samples
from consecutive frames are very similar, k-means is ap-
plied to select representative exemplars. The clustering is
performed for each person individually.

For the KNN approach and this database, the k = 10
closest neighbors were selected. This is a good trade-off
between recognition result and — important for real-time
systems — processing time.

Results on a different data set can be found in the
CLEAR evaluation 2007 [4] in which this system performed
very well.

3.1. Closed set identification

For closed-set identification, the system is only con-
fronted with subjects that are registered in the database. The
system has to classify each subject as one of the possible
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Figure 3. DTM weight functions for (left) KNN (k = 10) and (right) GMM approach. (top) Distribution of the distances to the closest
representative of the correct class (blue, solid) and to all other classes (green, dashed) and (bottom) the actual weight function.
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Figure 4. DT2ND weight function for (left) KNN (k = 10) and (right) GMM approach. (top) Distribution of distances between closest
and second closest representatives for correct (blue, solid) and false classifications (green, dashed) and (bottom) the actual weight function.

Table 1. Closed-set correct classification rates.

KNN CCR (%)

Frame-based 68.4

Uniform 90.0

DTM 92.0

DT2ND 91.3

Combined 92.5

GMM CCR (%)

Frame-based 62.7

Uniform 86.7

DTM 90.6

DT2ND 89.1

Combined 91.8

classes. The performance is measured as correct classifi-
cation rate (CCR), the percentage of correctly classified se-
quences in the test set. As baseline performance, every sin-
gle frame is evaluated individually. The results are given in
Table 1. Uniform denotes no weighting and therefore equal
contribution of each frame, combined the combination of
DTM and DT2ND by weight multiplication.

Video-based evaluation outperforms frame-based eval-
uation since the increased amount of available data helps
to resolve some ambiguities. Obviously, both weighting
schemes improve the classification performance over uni-
form weighting. The combination takes advantage of both
to perform even better. This is true both for the KNN and the
GMM approach. The increase is slightly larger for DTM,

as it assigns smaller weights to frames that are not similar
enough to the representatives of the training set. DT2ND,
in contrast, reduces the impact of ambiguous frames, i.e.
frames which yield similar scores for the top two candi-
dates, albeit how well the “face” is modeled. In fact, a badly
aligned image can lead to a distinct score, but it is likely to
have a large distance to the model. DTM is able to handle
this case, DT2ND is not. Nevertheless, reduction of ambi-
guity leads to better performance over uniform weighting as
well.

As far as the different models are concerned, the discrim-
inative approaches perform slightly better than the genera-
tive ones. Since parametric models like GMMs need more
training data with increasing dimensionality, this is possi-
bly caused by insufficient training data for some individuals
which can prevent derivation of meaningful models. Be-
sides, the number of mixture components might not be suffi-
cient to approximate the underlying probability distribution.
The discriminative models are less affected by little training
data, as they classify new data only based on existing data,
without making any assumptions about its distribution.

To investigate the robustness of the results, it is worth
looking at the results including rank-2 and rank-3 classifi-
cations, i.e. cases in which the correct identity is among the
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Figure 5. Correct recognition rate by rank for the KNN models.

Table 2. Correct recognition rate by rank for the KNN models.

Frame-based Uniform Combined

rank-1 68.4 90.9 92.5

rank-2 76.5 94.8 95.6

rank-3 81.1 96.2 96.7

best two or three hypotheses. Representatively, results are
reported for the KNN approach only. As clearly depicted in
Figure 5 and Table 2, the frame-based approach often gets
close to the correct decision. However, it has to decide on
the identity even in the case that the single feature vector is
of questionable quality. The approach lacks an opportunity
to support or discard the hypothesis using additional data as
done by the sequence-based methods. These are able to ex-
ploit the temporal dependency of consecutive frames and to
promote the rank-2 and rank-3 classifications of the frame-
based models to first place. Since many frames contribute to
the decision, the overall performance improvement is larger
than the difference between the correct and rank-3 classi-
fications in the frame-based approach. The rank analysis
supports the decision of choosing k = 10 neighbors, as
even in the frame-based approach, the correct result is al-
ready among the top three matches in 81.1 % of the cases.

The more frames can be evaluated, the more likely it is to
obtain a correct result. This gets confirmed by the observa-
tion that the average length of correctly classified sequences
is larger — 39 frames — than that of misclassified ones with
28 frames as depicted in Figure 6.

To justify the increased training efforts caused by the
larger training set size, an experiment was conducted to
compare the recognition performance using augmented and
unaugmented training data. The comparison can only cover
the KNN models as it is not possible to train appropriate
GMMs due to the fact that many individuals have fewer
images in the training set than the feature vector’s dimen-
sionality. As listed in Table 3, recognition performance in-
creases significantly in all three KNN cases. This shows that
the data augmentation is well worth the increased memory
and time resources.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

False   

Correct   

Sequence Length

Figure 6. Box plot showing the distribution of sequence lengths
for correct and false classifications. The box denotes the median
as well as the lower and upper quartiles whereas the “whiskers”
denote the range of values. Outliers are marked by crosses. The

plot is based on results achieved with the combined approach.

Table 3. Influence of data set augmentation with virtual samples.
All results improve significantly. Significance was computed with

crosstabulation.

Frame-based Uniform Combined

unaugmented 56.6 % 87.6 % 88.2 %

augmented 68.4 % 90.9 % 92.5 %

p-value 0.00 0.02 0.00

significantly better X X X

3.2. Open set identification

This task extends the previous one by the difficulty that
unknown people, i.e. persons which are not registered in the
database, can be encountered. Therefore, prior to classifica-
tion as one of the possible identities, the system has to de-
cide whether a person is known or unknown. Impostors are
to be rejected, while genuine members of the database need
to be accepted and classified correctly. To model this task
with the existing data set, the system is trained in a leave-
one-out manner. One person at a time is removed from the
database and is presented to the system as impostor during
the subsequent evaluation on all sequences. This process is
repeated N times, so that each person takes the impostor
role once. The acceptance-rejection criterion is a threshold
on the confidence of the classification, which is a value be-
tween 0 and 1. If the confidence is too low, the person is
rejected.

A measure of confidence of the classification is derived
by min-max normalization (see Equation (1)) of the accu-
mulated scores at the end of the sequence. The frame-based
scores are already normalized and can serve as confidence
measure without further processing.

Compared to closed-set identification, two more error
types can occur. Additional to false classifications, the sys-
tem can erroneously either reject genuine identities or ac-
cept impostors. All three errors have to be traded-off against
each other as it is not possible to minimize them at the same
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Figure 7. ROC curve of of open-set recognition results for the
KNN approach. The black line denotes equal error.

Table 4. Open-set equal error rates.

KNN EER

Frame-based 50.0 %

Uniform 23.4 %

DTM 23.3 %

DT2ND 21.3 %

Combined 21.0 %

GMM EER

Frame-based 43.7 %

Uniform 23.0 %

DTM 20.2 %

DT2ND 20.5 %

Combined 18.0 %

time. For this reason, a different performance measure is
necessary. The employed equal error rate (EER) denotes
the minimum combined error rate. It is reached when

FAR = FRR + FCR (6)

i.e. when the false acceptance rate (FAR) among the im-
postors is equal to the sum of the false rejection rate (FRR)
and the false classification rate (FCR) among the registered
persons. The rates are defined as

FAR =
ni,accepted

ni
(7)

FRR =
ng,rejected

ng
(8)

FCR =
ng,misclassified

ng,accepted
(9)

where n denotes number of frames or sequences and the
subscripts g and i denote genuine or impostor samples, re-
spectively. Please note that FCR is the false classification
rate conditional on acceptance as “known” individual.

For the KNN approach, it can be seen from the results in
Figure 7 that uniform and combined weighting form a lower
and upper bound for the individual weighting schemes.
The two weighting schemes affect different parts of the
ROC curve. The DTM scheme improves the recognition
rate for high false acceptance rates. A FAR of 100 percent
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Figure 8. ROC curve of of open-set recognition results for the
GMM approach. The black line denotes equal error.

is equivalent to closed-set identification in terms of the ROC
curve because the CCR can only be computed over genuine
samples. This confirms the results from the closed-set ex-
periment. DTM reduces the false classification rate, but it is
not able to discriminate between known and unknown per-
sons as the feature vector of an impostor can be indeed very
similar to the training representatives. Therefore, as can be
seen from Table 4, the EER is approximately the same than
in the unweighted case.

Genuine identities, however, usually have smaller dis-
tances to one single class representative than to all other
classes in the model, while impostors are similarly close
to multiple classes (c.f . Figure 4). This ambiguity is ex-
ploited by the DT2ND weighting scheme to identify im-
postors. Their scores are reduced, leading to smaller con-
fidence values, which in turn result in better rejection. The
same threshold causes rejection of more impostors than in
the unweighted case or, to put it the other way round, the
threshold can be reduced causing fewer false rejections. As
a consequence, the EER is reduced in open-set identifica-
tion.

Looking at Figure 8, the observations are similar if the
GMM output is used as similarity measure: Combined and
uniform weighting represent upper and lower bounds on
the individual weighting schemes and DTM outperforms
DT2ND for high FARs (i.e. getting closer to closed-set
identification). However, in contrast to the results above,
DT2ND alone does not perform better than DTM in terms
of EER. In combination with DTM, however, there is a
performance improvement observable that does not exist in
Figure 7 (where the Combined ROC merely represents the
best out of DTM and DT2ND). The combination leads to
the lowest EER of all runs, as can be seen from Table 4.

Since the ROC curves show the CCR depending on the
FAR, the question arises to which extent each of the other
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two types of error, false rejection and false classification,
impair classification performance. To investigate this, Fig-
ure 9 plots FRR and FCR separately for Combined-KNN.
The lower bound corresponds to the CCR as depicted in Fig-
ure 7. At the point of equal error, there remains only a min-
imal FCR of about 1 percent while the major part of about
20 percent is caused by false rejection of genuine identi-
ties. This reflects the difficulty of separating impostors and
genuines as they represent arbitrary subsets of all possible
faces.

4. Conclusion

In this study, a video-based approach to face recognition
is presented which is able to process real-world data, com-
prising large variations of a subject’s visual appearance.

Three weighting schemes have been introduced to
weight the contribution of individual frames in order to im-
prove the classification performance. The first, DTM, takes
into account how similar a test sample is to the representa-
tives of the training set and therefore reduces the negative
impact of unfamiliar data (e.g. due to bad recording con-
ditions or faulty face registration). The second, DT2ND,
reduces the influence of frames which deliver ambiguous
classification results. At least in the KNN case, it is able
to reduce the equal-error rate in open-set identification. Fi-
nally, the combination of DTM and DT2ND was shown to
join the benefits of both.

Extensive experiments on a large video database of 41
non-cooperative subjects have been conducted for both
closed-set and open-set identification tasks. The results
show that the combination of video-based face recognition
with a local appearance-based approach is able to handle a
large number of variations of facial appearance caused by

illumination, pose, expression, and occlusion.
In the future, detection of impostors in the open-set iden-

tification task needs further investigation. However, it has
to be kept in mind that impostor detection is a non-trivial
task because it requires the separation of an arbitrary subset
of all possible faces from the rest.

Acknowledgements
This work is sponsored by the European Union under

the Integrated Project CHIL, contract number 506909, and
under the FP6-2004-ACC-SSA-2016684 SPICE project.

References
[1] O. Arandjelovic and A. Zisserman. Automatic face recognition for

film character retrieval in feature-length films. In CVPR, pages 860–
867, Washington, DC, USA, 2005.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs.
fisherfaces: Recognition using class-specific linear projection. IEEE
Trans. PAMI, 19(7):711–720, July 1997.

[3] A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood from
incomplete data via EM algorithm. Journal Royal Statistical Society,
Series B, 39:1–38, 1977.

[4] H. K. Ekenel, Q. Jin, and M. Fischer. ISL person identification
systems in the CLEAR 2007 evaluations. 2007. http://www.
clear-evaluation.org.

[5] H. K. Ekenel and R. Stiefelhagen. Local appearance-based face
recognition using discrete cosine transform. In EUSIPCO, 2005.

[6] H. K. Ekenel and R. Stiefelhagen. Analysis of local appearance-
based face recognition: Effects of feature selection and feature nor-
malization. CVPRW, page 34, 2006.

[7] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many:
Illumination cone models for face recognition under variable lighting
and pose. IEEE Trans. PAMI, 23(6):643–660, 2001.

[8] P. J. Huber. Robust Statistics. Wiley, 1981.
[9] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining

classifiers. IEEE Trans. PAMI, 20(3):226–239, 1998.
[10] K. C. Lee, J. Ho, M. H. Yang, and D. Kriegman. Video-based

face recognition using probabilistic appearance manifolds. In CVPR,
pages I: 313–320. IEEE Computer Society, 2003.

[11] F. Li and H. Wechsler. Open set face recognition using transduction.
IEEE Trans. PAMI, 27(11):1686–1697, 2005.

[12] X. Liu and T. Chen. Video-based face recognition using adaptive
hidden markov models. In CVPR, pages I: 340–345. IEEE Computer
Society, 2003.

[13] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 60(2):91–110, 2004.

[14] J. Sivic, M. Everingham, and A. Zisserman. Person spotting: Video
shot retrieval for face sets. In CIVR, volume 3568, pages 226–236.
Springer, July 2005.

[15] R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. K. Jain. Large-
scale evaluation of multimodal biometric authentication using state-
of-the-art systems. PAMI, 27(3):450–455, 2005.

[16] J. Stallkamp. Video-based face recognition using local appearance-
based models. Master’s thesis, Interactive System Labs (ISL), Uni-
versity of Karlsruhe, Germany, Nov. 2006.

[17] M. Turk and A. Pentland. Eigenfaces for recognition. J. Cogn. Neu-
rosci., 3(1):71–86, 1991.

[18] G. Welch and G. Bishop. An introduction to the Kalman filter. In
SIGGRAPH, Course 08, 2001.

[19] S. Zhou, V. Krueger, and R. Chellappa. Probabilistic recognition of
human faces from video. CVIU, 91(1-2):214–245, Feb. 2003.


