
Universität Karlsruhe (TH) at TRECVID 2007
H.K. Ekenel, M. Fischer, H. Gao, K. Kilgour, J.S. Marcos, R. Stiefelhagen

interACT Research, Computer Science Department, Universität Karlsruhe (TH)
Am Fasanengarten 5, Karlsruhe 76131, Germany

{ekenel,mika.fischer,s_gao,kevin.kilgour,stiefel}@ira.uka.de, jordi@gps.tsc.upc.edu

Web page: http://isl.ira.uka.de/

Abstract—In this paper, we present the systems developed by
the interACT Research Center at Universität Karlsruhe (TH)
for the TRECVID 2007 evaluation. Our first participation in the
TRECVID evaluation includes the shot boundary detection and
high-level feature detection tasks. The shot boundary detection
system contains four separate detectors, one for each type of shot
boundary we try to detect: cuts, fast dissolves, fade in / fade outs
and dissolves. High-level feature detection utilizes both visual and
textual cues. It uses color, texture and edge-based features for
visual processing and relative term frequency-based features for
text processing. All the systems we have developed have been
trained on the common development data.

I. INTRODUCTION

This year, it was the first time that the Universität Karlsruhe
(TH) participated in the TRECVID evaluations. The main
focus of our first participation was on developing a common
software framework for multimedia processing and to build
baseline systems for the shot boundary detection and high-
level feature detection tasks. The baseline systems have been
developed by benefiting from the experiences gained from
the previous TRECVID evaluations. They consist of state-
of-the-art feature extractors and classifiers which have been
shown to perform well. The shot boundary detection system is
based on the ideas in [1]–[3]. For high-level feature detection,
features similar to MPEG-7 visual descriptors, as well as
geometric blur features [4] have been used as visual cues
and relative term frequency-based features have been used
as textual cues. The shot boundary detection system uses
thresholding to detect shot-boundaries, whereas the high-level
feature detection system relies on support vector machine
classifiers. Many fusion schemes have also been tested for
combining multiple low level features.

II. SHOT BOUNDARY DETECTION

The shot boundary detection system is built in a modular
way and consists of an MPEG decoder [5], several feature
extractors, several detectors for different types of shot bound-
aries, and a fusion module, that fuses the results of the different
detection modules.

The detection modules declare which features they need and
how many frames of history, so that only required features
are computed, and features that are used by multiple detection
modules are only computed once. This way it is also very easy
to experiment with different inputs to the detection modules.

The detection modules are specialized for a specific type of
shot boundary and are described in detail below. New modules
can be easily integrated into this framework.

The fusion module has the purpose of resolving any con-
flicts that may arise, like overlap of shot boundaries detected
by different modules.

After fusion the system outputs an XML file containing the
detected shot boundaries.

A. Feature extraction

The following features were extracted from each frame:
1) RGB histogram difference: The RGB histogram of each

frame, with 8 bins per color, was computed and – starting
with the second frame – the histogram difference between
the current and preceding frame was computed. First the 3D
histograms were vectorized, yielding histogram vectors x and
y. The difference was then computed by:

d(x,y) = (x− y)T A(x− y)

where aij is the similarity of the colors corresponding to
the centers of the histogram bins i and j:

aij = 1−
√

(ri − rj)2 + (gi − gj)2 + (bi − bj)2
N

where N is a normalization constant, so that 0 ≤ aij ≤ 1.
2) Edge map: For each frame an edge map was computed

using the Sobel operator.
3) Intensity standard deviation: Each frame was converted

to gray-scale and the standard deviation of the intensities was
computed.

B. Shot boundary detectors

1) Cut detector: The cut detector uses the RGB histogram
difference feature to find cut candidates. For this it considers
a window of seven frames around the current frame. The cut
detector searches for peaks, so if the current frame is not
the largest value in the window, the candidate is discarded.
Otherwise the following values are computed: the kurtosis
of the values in the window, the ratio of the current value
and the sum of the other values in the window, as well as
the ratio of the current value and the second largest value in
the window. The histogram difference itself and the computed
values are then checked against thresholds. If any threshold
is not reached, the candidate is passed to the fast dissolve
detector. Otherwise a flash detector is run to ensure that the



histogram difference is not the result of a flash. The flash
detector works by computing the matching error between the
edge maps of the current and preceding frames, as described
in [1]. If the matching error is low, a flash is detected and the
candidate is passed to the fast dissolve detector. Otherwise a
cut is detected.

2) Fast dissolve detector: The fast dissolve detector is
employed on cut candidates that fail to pass the strict require-
ments for a cut. It considers the histogram differences within
a window of nine frames around the current candidate and
computes the ratio of the three center frames and the sum
of the rest of the frames in the window. If this value does
not exceed a threshold, the frame is discarded. Otherwise it is
checked if some frames can be found, so that the candidate
is between them and they can be successfully modeled as a
dissolve. If X is the start frame and Y is the end frame, then all
frames between X and Y are modeled by Z = αX+(1−α)Y .
The α’s are found by applying the least squares method. For
the dissolve to be accepted the α must increase from start to
end frame and the squared error must not be too large. If a
dissolve is detected, the start and end frames are checked for
a flash and if none is detected, the candidate is declared a fast
dissolve.

3) Fade out / fade in detector: For the FOI detector
we followed [2]. The FOI detector considers the standard
deviation of pixel intensities. It is triggered on monochrome
frames, which have a very low standard deviation. Sequences
of monochrome frames are reported to the fusion module.
Additionally the start and end of the monochrome frames
are checked for a fade out or fade in respectively. This is
done by checking for a linear decrease/increase in the standard
deviation by linear regression. If a fade is found it is also
reported to the fusion module. The fusion is done late because
this way we also capture cases where there is a cut to black,
then some black frames and a a fade in to the next scene. Such
transitions would not be detected by a pure FOI detector as
described in [2] because there is no fade out in the beginning
of the transition.

Optionally, the system can ignore monochrome frames that
are not black or gray but contain a significant amount of color.

4) Dissolve detector: For the dissolve detector several
heuristic approaches were tried: [2], [3], [6]. Unfortu-
nately none of them reached acceptable performance on the
TRECVID 2006 data set. So in the end we implemented a
method that’s similar to the one used in the fast dissolve
detector.

Dissolve candidates are detected similarly to [1]. The
(smoothed) intensity standard deviation is checked for a de-
crease followed by an increase. Each of those cases is a
dissolve candidate.

For each candidate the point of minimal standard deviation
is found and it is checked that the start or the end of the
dissolve has a significantly larger standard deviation than the
minimum. If this is the case, the sequence of frames with
a length of nine frames around the frame with minimum
standard deviation is checked for a dissolve using the same
technique as described in section II-B2. If a dissolve is
detected, the complete candidate is declared a dissolve.

Run Comment
base Baseline system
mod1 Discard FOIs with color
mod2 lower thresholds for cuts
mod3 higher thresholds for cuts
mod4 lower thresholds for fast dissolves
mod5 higher thresholds for fast dissolves
mod6 dissolves have precedence over other transitions
mod7 lower thresholds for dissolves
mod8 higher thresholds for dissolves
mod9 no dissolve detection at all

TABLE I
RUNS SUBMITTED IN SHOT BOUNDARY DETECTION TASK

C. Fusion module

The fusion module is responsible for fusing the mono-
chrome frames returned by the FOI detector with correspond-
ing fades, cuts or dissolves. The other function is to resolve
overlapping transitions. Especially the dissolve detector pro-
duces many false positives, so if a dissolve is overlapping with
any other transition, the dissolve is discarded in all runs except
one.

D. Evaluation Results

For the TRECVID evaluations 2007 we prepared ten system
configurations, which are shown and described in Table I. The
results of the evaluation can be seen in Table II.

E. Preliminary analysis

It can be seen clearly that our system works quite well
for cuts (i.e. transitions spanning five frames or less), but the
performance is not so good for longer transitions.

Because there were fewer long transitions than in previous
evaluations the total results are still acceptable.

We have performed a preliminary analysis of the results:
1) Cuts and fast dissolves: There are very few false de-

tections or misses that cannot be explained easily. The most
common problems were:

• Our thresholds were not tuned for black and white videos,
so there were some misses in those segments. Similarly
for segments with washed-out colors.

• Some segments have an image distortion in the last frame
before a cut, which caused some misses as well.

• Some false detections really have a sudden change in im-
age content. To establish that it is not a cut semantically,
more detailed analysis of the image content should be
performed.

2) Fade outs / fade ins: A problem with our approach to
fade detection was that our threshold for the standard deviation
of the pixel intensities was set too high, leading to some false
detections in dark scenes with very low contrast. In the past
TREDVID data, which was used for development, such scenes
were very rare.

3) Dissolves: Our dissolve detector did not work very well
and the thresholds were set too low in all runs except mod8,
leading to lots of false detections.

In the future we will not pursue the presented approach
further and instead use an approach based on SVMs [1], [3].



Total Cuts Graduals Gradual frames
Run Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%)
base 91.3 59.8 93.6 94.1 65.5 8.9 74.8 71.2
mod1 91.4 60.1 93.9 93.9 63.1 8.7 74.6 71.3
mod2 93.1 58.8 95.6 89.8 65.5 9.0 74.8 71.2
mod3 90.0 59.8 92.3 95.1 65.5 8.9 74.9 71.3
mod4 92.7 51.3 95.5 70.2 61.7 9.2 73.5 72.0
mod5 90.9 60.1 93.2 95.7 65.5 8.9 74.6 71.2
mod6 81.3 53.4 82.6 94.4 67.0 7.8 76.2 69.9
mod7 91.8 40.1 93.5 94.1 72.8 4.4 73.8 70.5
mod8 90.4 81.7 93.7 94.1 54.4 23.3 74.5 73.4
mod9 87.6 92.0 93.8 94.0 20.4 44.2 77.6 87.2

TABLE II
SHOT BOUNDARY DETECTION RESULTS

III. HIGH-LEVEL FEATURE EXTRACTION

As can be seen in Fig. 1, the high-level feature extraction
system is composed of several successive processing steps. In
the first step, videos are described by means of feature vectors.
In the second step, a set of Support Vector Machines classifies
the features in each vector as belonging or not to each category.
In the third step, previous results are combined to generate the
final score and the shots are ranked using this score.

A. Low-level descriptors
1) Color descriptors: Color features are the most popular

visual features in the area of image retrieval, because colors are
usually related to objects and scenes in images. Furthermore,
color features are less dependent on the size, direction and
view point of images compared to other visual features, which
leads to high robustness. In our case, we use three different
types of color descriptors.

a) Histogram: Color histograms [7] are applied in many
image retrieval systems as a color feature. They describe the
distribution of different colors in an image, while ignoring
each color’s spatial location.

We chose the HSV color space to extract histogram bins
because the “V (Value)” value corresponding to the brightness
component can be down-sampled more, so that a compact
histogram can be obtained while the “H (Hue)” values, which
represent the color information, can be more precisely quan-
tized.

Digital image displays usually use the RGB color space to
describe each pixel, so we need to convert the images into
HSV space. We use 18 bins for the “H” channel, 3 bin for the
“S (Saturation)” channel and 3 bins for the “V” channel. So
totally we get 162 histogram bins.

b) Color moments: Color moments [8] have been suc-
cessfully used in many retrieval systems, especially when
the image contains just the object. The first order (mean),
the second (variance) and the third order (skewness) color
moments have been proved to be efficient and effective in
representing color distributions of images. To be able to extract
some local color features such as the sky, which usually lies
in the upper part of an image, we divide an image into k× k
blocks, and extract color moments from each image block.
The final feature vector is obtained by concatenating the color
moments extracted from the blocks, which results in a 9×k×k
feature vector. Here we set k = 3.

c) Color correlogram: The color correlogram [9] was
proposed to characterize not only the color distributions of
pixels, but also the spatial correlation of pairs of colors.
The first and the second dimension of the three-dimensional
histogram are the colors of pixel pairs and the third dimension
is their spatial distance.

A color correlogram is a table indexed by color pairs, where
the k-th entry for (i, j) specifies the probability of finding a
pixel of color j at a distance k from a pixel of color i in the
image. Let I represent the entire set of image pixels and Ic(i)
represent the set of pixels whose colors are c(i).

If we consider all the possible combinations of color pairs
the size of the color correlogram will be very large. Therefore
a simplified version of the feature called the color autocorrel-
ogram is often used instead. The color autocorrelogram only
captures the spatial correlation between identical colors and
thus reduces the dimension to O(Nd).

2) Texture descriptors: Texture extractors allow us to de-
scribe images even in those cases where there exists no color
information. In our system, we use three kinds of texture
descriptors.

a) Co-occurrence texture: The implemented algorithm
is based on the description given in [10]. In addition to
this paper, [11] and [12] report the exact equations for the
chosen five types of features extracted from the gray level
co-occurrence matrix (GLCM): Entropy, Energy, Contrast,
Correlation and Local homogeneity (also called homogeneity
or inverse difference moment (IDM)).

Those features, as in [10], are extracted from 24 different
GLCMs, in our case with 8 gray level bins (matrix with
8 × 8 = 64 bins), at different orientations and distances,
although this number is adjustable to 12, 8, 6, 4, 3, 2 or 1
directions/distances. The set of offsets is as depicted in Fig. 2
and the resulting vector is 24× 5 = 120-dimensional.

b) Wavelet texture grid: The implementation follows
the description in [10], obtaining the variances of the high-
frequency sub-bands of the Wavelet transform of each grid
region. As an example, they use 12 sub-bands (4-level analy-
sis), and so we do in our implementation. The used wavelet
base function is the simple Haar wavelet while the grid has
4×4 = 16 regions. Thus, the resulting vector is 16×12 = 192-
dimensional.

c) Edge histogram: For the edge histogram, 5 filters as
proposed in the MPEG-7 standard are used to extract the kind



 
Shot 

boundaries & 
Keyframes 

 
Video 

Low-level feature extractors

Image descriptors

Text descriptor

Shape-based

Color-based

Texture-based

HSV histogram

Color moments

Color correlogram

Co-occurrence texture 

Wavelet texture grid

Edge histogram

Geometric blur

 
ASR-MT 

Low-level classifiers

 
SVMs histogram

 
SVMs moments

 
SVMs correlogram

 
SVMs co-occurr.

 
SVMs wavelet

 
SVMs edge histo.

 
SVMs geometric b.

 
SVMs text

36

High-level fusion 

SVM-based 

Neural Network-based 

Simple schemes 

MIN-MAX 

Voting 

Sum 

Weighted Voting 

Weighted Sum 

Inter-Category 
correlation 

 
Score-
ranked 

XML output 

 
Annotation 

Fig. 1. Our high-level feature extraction system. Three processing steps are involved in the presentation of the results: low-level description of the shot,
low-level individual descriptor classification and high-level fusion.

X

1

2
3
4

5
6

7

8
9

10 11 12
13

141516
17

18

19

20
21

22
23
24

Fig. 2. Set of offsets used for computing the 24 GLCMs. X is a pixel in
an image.

of edge in each region of 2 × 2 pixels. Then, those small
regions are grouped in a certain number of areas (4 rows ×
4 columns in our case) and the number of edges matched by
each filter (vertical, horizontal, diagonal 45◦, diagonal 135◦

and non-directional) are counted in the region’s histogram.
Thus, the resulting vector is 4× 4× 5 = 80-dimensional.

3) Shape descriptor: Color features are not sufficient for
an image retrieval task, especially for object detection and, as
mentioned with texture descriptors, in the case of retrieving
monochrome images. Features based on shape information can
be used in these cases.

a) Geometric blur: Geometric blur based features at-
tempt to capture the local shape cues in images. The geometric
blur of a feature signal is simply a convolution with a spatially
varying kernel. The motivation is to provide robustness to
variations in the position of features due to intra-class variation

and small changes in pose.
To extract the geometric blur feature, we first extract four

oriented edge features from a given image and randomly select
50 points where the edge energy is high. After geometric blur
is applied on each of the four channels, we sampled 60 points
on the concentric orbit of the 50 selected base points. The
largest radius of the concentric circles is 50 pixels. Then a
geometric blur descriptor is obtained by concatenating the 4
sub-sampled features on each channel. The similarity of two
images is calculated by finding average minimal distances
between the descriptors using the L2 distance.

With this method, we expect to gain confidence in those cat-
egories that represent objects. These categories are: Airplane,
Animal, Boat-Ship, Building, Bus, Car, Face, Mountain and
Person. We select 338 key-frames as the samples from these
categories and the distances between a given image to all these
samples to build a 338 vector for SVM training and testing.

4) Text descriptor: Classifying video shots based on the
text spoken ?? is done in multiple steps. The required data
for this stage is a list of shot-boundaries and a list of time
stamped sentences. Research has shown [15] that often the
critical words describing a shot are not spoken during the
shot, so the recall rate can be increased by taking a bigger
window than the shot size into consideration. The window size
combined with this data produces a list of sentences associated
with each shot. This can be turned into a list of shot feature
vectors by calculating the relative word frequency of each
word. Stemming and stop word filtering are used to reduce
the dimension. An SVM is trained for each concept and then
used for classification. All this processing is depicted in Fig.
3



Fig. 3. Text descriptor processing chain.

a) Window size: The English translation of the text data
for each video is supplied as a list of sentences with their
respective starting and ending times. Each shot has a starting
time x and finishing time y. The easiest way to generate a
list of sentences associated with the shot is to include every
sentence ending after x and starting before y. Because some
important keywords are just outside the shot boundary the
recall rate can be improved by including every sentence ending
after x − t and starting before y + t. If t is too small then
important keywords will be missed, if t is too large, too much
unassociated text will be included. Tested values of t were 0,
15, 20 and 60 seconds with 15 or 20 performing best.

b) Stemming: A stemmer finds the root or stem of a
given word. For example “runs”, “running”, ... are forms of
the word “run”. Stemming is performed to reduce the size
of the feature vector and to neutralize the grammar. For our
purpose a “big gun” and“the biggest gun” will be counted as
the same; “someone is shot” and “someone is shooting” both
describe a similar scene. Two different methods of stemming
were tested, rule based and dictionary lookup:

• Rule Based Stemmer. A rule based stemmer like the
Porter Stemmer applies a series of rules to the word, like
removing the ’s’ or ’ed’ at the end.

• Dictionary Lookup. A giant lookup table is generated by
processing a dictionary. This type of stemmer is only as
good as the base dictionary. The wikimedia dictionary

en.wiktionary.org is cc licensed and can be downloaded
and easily mined.
c) Stop words: Stop words like ‘and’ or ‘maybe’ are fre-

quently occurring words that mostly only have grammatical or
syntactic meaning and do not contain any relevant information.
These stop words are filtered out to reduce the feature vector
size.

d) Shot feature vectors: Because a lot of words naturally
occur frequently the important information that should be used
to train our SVMs is not an absolute word frequency but the
factor by how much it changes compared to our base word
count.

For each of the n words wi we can count its total occur-
rences #wi and its occurrences in each document di #wi,j .
GTF (wi) = #wi per 106 words in the base language
TF (wi, dj) = #wi,j per 106 words in document di

This allows us to compute the feature vector −→fj =
(f1,j , f2,j , ..., fn,j).

fi,j =
TF (wi, dj)
GTF (wi)

(= RTF ) (1)

We discard fi,j < t, so that our vector is sparse.

B. High-level fusion

We get a score from each low level feature classifier; this
score indicates the confidence of the corresponding category.



We combine these low level scores in order to improve the
results. The following fusion approaches are considered:

1) SVM. The normalized scores resulting from the low level
feature classifiers for each frame are concatenated to a
multi-confidence vector. These score vectors are then
used to train a high level SVM classifier. The final
confidence scores result from this high level classifier.

2) Neural network. Similarly to fusion with an SVM clas-
sifier, we also build a neural network for each category
with one hidden layer to learn and evaluate the low level
scores. The number of hidden units in the hidden layer
of each network is tuned by a grid search.

3) MIN-MAX. The MIN-MAX rule is a simple fusion
strategy. We only consider the score s, which has the
largest distance to the border of judgment b. If s− b is
positive, then judgment will be positive, too. Otherwise
we consider it a negative sample.

4) Voting. This simple rule judges through voting the scores
in the low level score vector. The scores of the majority
determine the final judgment.

5) Sum. All scores in a score vector are added together and
the result is the combined confidence score.

6) Weighted voting and weighted sum. Assign a weight for
each score in a score vector. This weight can be the
normalized InfAP (inferred average precision) for each
low level feature classifier (each feature extractor and
each category). This was inspired by the fact that some
low level features are more suitable and descriptive for
some categories. For example, the category “Sky” should
be represented more precisely by color information, etc.

7) Correlation. Among the 39 categories, there is a cor-
relation between semantically correlated categories. A
frame that contains “Boats” will most probably con-
tain the category “Water”, for instance. We represent
these correlation relations as a correlation matrix. The
elements in this matrix are the conditional probabilities
P (A|B) of a category A given a certain category B. This
correlation matrix helps us to the analyze the confidence
scores in a semantic way.

C. Experiments and results

1) Development: The main problem we had to deal with
was the training of the SVMs, both for low-level classification
and SVM-based high-level fusion.

We divided the development data set in three parts. The first
part is for low-level feature learning, the second part is for low-
level feature evaluation and fusion score learning, and finally
the third part is for fusion evaluation. Through permutation,
we made a 6-fold cross validation on these 3 parts of data-
set. We optimized the parameters for fusion classifiers through
this 6-fold cross validation and selected the classifier from the
fold that resulted in the best mean InfAP score as the final
classifier.

The used kernel function in all cases is an RBF (Gaussian
function) with default parameter γ = 1. All the parameters in
the learning process are the default ones in SVM-light, except
for a parameter responsible of controlling the cost margin

Run Mean InfAP Description
UKA1 2.1% Neural networks without ASR-MT
UKA2 2.2% Sum with ASR-MT
UKA3 2.3% Sum without ASR-MT
UKA4 0.6% Voting with ASR-MT
UKA5 1.2% SVM fusion with ASR-MT
UKA6 2.2% Neural networks with correlation,

w/o ASR-MT

TABLE III
HIGH-LEVEL FEATURE EXTRACTION RESULTS

for positive examples. This is set to the number of negative
samples in the training set divided by the number of positive
samples. The idea was extracted from [13] and it aims at
achieving better decision thresholds with unbalanced training
sets.

2) Submission for TRECVID: Our submission for
TRECVID consists of six runs, each of them featuring a
different high-level fusion scheme or applying some further
combination of the low-level classification. The list is:

1) UKA1. Neural networks-based high-level fusion, using
only image information

2) UKA2. Simple fusion by sum of low-level scores, using
both image and text information

3) UKA3. Simple fusion by sum of low-level scores, using
only image information

4) UKA4. Simple fusion by voting of low-level scores,
using both image and text information

5) UKA5. SVM-based high-level fusion using both image
and text information

6) UKA6. Neural networks-based high-level fusion with
simple correlation module, using only image information

The first five runs were ordered by the mean InfAP obtained
with the mentioned division of data. The sixth run, unfortu-
nately, could not be evaluated and that’s why it appeared in
the 6th place. The obtained results are grouped in Table III.

From the table, it can be seen that text features didn’t
enhance the results achieved by using just image features. The
basic correlation module slightly enhances the performance,
although not dramatically. These results encourage us to
further exploit inter-category relationships in order to achieve
better improvements in the future.

IV. CONCLUSIONS

In our first participation in the TRECVID evalualtions, our
goals were to develop a common software infrastructure for
doing multimedia retrieval and to develop baseline systems
for shot boundary detection and high-level feature extraction.
These goals were achieved: our shot boundary system is
performing well in most areas and our system for high-level
feature extraction performs around the average level of all
participants.

There is still room for improvement in both systems. The
shot boundary detection system would benefit from a better
dissolve detector and detailed analysis of the TRECVID results
will help us to find improvements for the other detectors.

For the high-level feature extraction system, an area for im-
provement is the optimization of the SVM parameters, which



is the main reason for the comparatively low performance
of our low-level feature classifiers. The fusion of the visual
and textual cues could also be weighted according to the
corresponding performance in each category, while in our
current system they are always weighted equally.

REFERENCES

[1] Z. Liu, D. Gibbon, E. Zavesky, B. Shahraray, P. Haffner, “AT&T
Research at TRECVID 2006,” NIST TRECVID Workshop, Gaithersburg,
USA, Nov. 2006.

[2] R. Lienhart, “Comparison of Automatic Shot Boundary Detection Al-
gorithms,” Proc. SPIE Storage and Retrieval for Image and Video
Databases, vol. 3656, pp. 290–301, Jan. 1999.

[3] R. Lienhart, “Reliable transition detection in videos: A survey and
practitioners guide,” Int. Journal Image and Graphics, vol. 1, no. 3,
pp. 469–486, Aug. 2001.

[4] A.C. Berg, T.L. Berg, J. Malik, “Shape matching and object recognition
using low distortion correspondences,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2005.

[5] F. Bellard, M. Niedermayer et al., “The FFMpeg Project,”
http://ffmpeg.sf.net/.

[6] S. Ayache, J. Gensel, G.M. Quénot, “CLIPS-LSR Experiments at
TRECVID 2006,” NIST TRECVID Workshop, Gaithersburg, USA, Nov.
2006.

[7] M.J. Swain, D.H. Ballard, “Color Indexing,” Int. Journal of Computer
Vision, vol. 7, no. 1, pp. 11–32, 1991.

[8] M. Stricker, M. Orengo, “Similarity of color images,” Proc. SPIE
Storage and Retrieval for Image and Video Databases, vol. 2420, pp.
381–392, San Jose, USA, Feb. 1995.

[9] J. Huang, S.R. Kumar, M. Mitra, W.-J. Zhu, R. Zabih, “Image indexing
using color correlograms,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 762–768, San Juan, 1997.

[10] M. Campbell, A. Haubold, S. Ebadollahi et al., “IBM Research
TRECVID-2006 Video Retrieval System,” NIST TRECVID Workshop,
Gaithersburg, USA, Nov. 2006.

[11] M. Partio, B. Cramariuc, M. Gabbouj, A. Visa, “Rock texture retrieval
using gray level co-occurrence matrix,” Proc. 5th Nordic Signal Pro-
cessing Symposium, Oct. 2002.

[12] D. Gadkari, “Image quality analysis using GLCM,” M.Sc. Thesis,
B.S.E.E. University of Pune, 2000.

[13] K. Morik, P. Brockhausen, T. Joachims, “Combining statistical learning
with a knowledge-based approach - A case study in intensive care
monitoring,” Proc. 16th Int’l Conf. on Machine Learning, 1999.

[14] J. Yang, M. Y. Chen, A. G. Hauptmann, “Finding person X: Correlating
names with visual appearances,” Proc. Conf. Image and Video Retrieval
(CIVR04), Ireland, 2004.

[15] M. Fuller, J. Zobel, “Conflation-Based Comparison of Stemming Algo-
rithms,” Proc. 3rd Australian Document Computing Symposium, Sydney,
Australia, 1998.

[16] T. Joachims, “Learning to Classify Text Using Support Vector Machines
– Methods, Theory, and Algorithms,” Kluwer/Springer, 2002.

[17] M. Huijbregts, R. Ordelman, F. de Jong, “Annotation of Heterogeneous
Multimedia Content Using Automatic Speech Recognition,” Proc. 2nd
Int. Conf. Semantics And Digital Media Technologies (SAMT), Dec.
2007.


