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Abstract—In this paper, we present the system developed
by the Interactive Systems Labs at Universität Karlsruhe for
the TRECVID 2008 evaluation. It is the second time that we
participate in the TRECVID evaluation this year. Last year, the
main goal of our first participation was to develop a common
software framework for multimedia processing and to build
baseline systems for the shot boundary detection and high level
feature (HLF) extraction tasks. The evaluation task for shot
boundary detection was dropped this year, hence we focused
our work on HLF extraction only. The color, texture and shape
features were used as low-level features as before, while textual
feature was not used. We used support vector machine (SVM)
classifier for low-level feature classification. The parameters for
SVMs were optimized in a grid-search scheme. A simple weighted
sum fusion was applied to extract the high-level features, where
the weights were calculated for each category and each low-level
feature. More training data was used and evaluation results were
improved compared to the last year’s evaluation results.

I. INTRODUCTION

It was the second time that we participated in the TRECVID
evaluation this year. Last year, the main goal of our first
participation was to develop a common software framework
for multimedia processing and to build baseline systems for
the shot boundary detection and high level feature (HLF) ex-
traction tasks. The evaluation task for shot boundary detection
was dropped this year, hence we focused our work on HLF
extraction only. Unfortunately, the evaluation results on our
HLF extraction system from last year were not as good as
we expected, they were below the average. So, this year,
we focused our work on finding implementation problems of
the old system and parameter optimization for training SVM-
based classifiers.

The paper is organized as follows: The old HLF detec-
tion system from the last year is described in Section II.
In Section III, we explain the modifications we have done
for this year’s evaluation. The experimental results on the
TRECVID 2007 and 2008 data are presented in Section IV.
The conclusions are given in Section V.

II. OVERVIEW

Our baseline system for HLF detection was composed of
several successive processing steps. In the first step, the key-
frames of the master shots in the videos were represented by
low-level feature vectors, which describe the color, shape and
textual content of the frames. In the second step, these features
were normalized and fed into a set of SVM classifies in order

to determine whether a category exists in a key-frame or not.
We trained SVM classifier for each low-level feature descriptor
and category. In the third step, the scores that are returned by
the SVM classifiers were normalized and combined to generate
the final decision and the shots were ranked according to the
fused scores.

Both visual cues and textual cues were used as low-level
features. For the visual cues, we employed the features similar
to MPEG-7 visual descriptors, including color histogram [10],
grid color moments [9], color correlogram [5], co-occurrence
texture [2], wavelet texture [2] and edge histogram [4]. In
addition to the color-based and texture-based features, the
geometric blur [1] was also used as a shape-based visual cue.
Relative term frequency-based textual features were investi-
gated as an additional descriptor which were obtained from
the machine translated automatic speech recognition output.
Details about the design and implementation of these features
are given in [4].

We split the development data of TRECVID 2007 into
three portions. The first part was used for low-level feature
learning, the second was for validation of the learned clas-
sifiers and learning the high-level fusion (for learning-based
fusion methods), and finally the third part was used for the
validation of high-level fusion. Through permutation, a 6-fold
cross validation was performed on these three portions of data.
The classifiers from the fold that achieved the highest mean
average precision (MAP) were chosen as the final classifiers.

We considered several high-level fusion schemes last year
to combine the outputs from low-level feature classifiers. Two
of which are learning-based fusion approaches that are trained
with the scores returned by the low-level feature classifiers. We
used neural networks and SVMs, respectively, for this kind of
high-level fusion. Simple fusion rules were utilized as well to
combine the low-level classifiers, which include the sum rule,
min-max rule, voting rule and the weighted version of the sum
rules. Correlation among the categories was also considered as
a simple semantical analysis between the categories.

Last year, we submitted totally 6 runs for the final evalua-
tion. However, all the results were below the average. The best
run was generated using the fusion scheme of sum rule and the
achieved infAP was 2.3%. There were several reasons for the
low performance compared to other systems using the similar
low-level features and classification scheme, according to our
analysis in [4] two of which were the fixed assignment of
weights for a certain low-level feature extractor and parameter
optimization for SVMs.



III. REVISED SYSTEM

We investigated the old system intensively to find the
problems that cause the poor performance. We started from
extracting the low-level features. Since the textual cues did
not help in the old system, we dropped this feature. Only the
sum rule was used since it outperformed the other fusion ap-
proaches and it was also widely applied in many other systems.
The major revision steps of the old system is described in the
following subsections.

A. Low-level features

Last year, the color feature vector of grid color moments
was calculated in HSV space and the grid size was 3 × 3.
We followed the implementation in [2] where the grid size is
5×5 to obtain finer local color features. The first order (mean),
the second (variance) and the third order (skewness) color
moments were calculated in each local block in the image and
the Lab color space was used instead of HSV. The dimension
of this feature was 9× 5× 5 = 225.

B. Low-level feature classification

According to [3], comparing the histogram-based feature
vectors with the L1 metric or the χ2 metric outperforms the L2
metric, because the histograms are discrete densities. We chose
the L1 distance for its simplicity and outstanding performance
in [3]. The L1 distance is defined as:

dL1(x, x′) =
∑

i

|xi − x′i|,

which gives the Laplacian RBF kernel:

KLaplacian(x, x′) = e−
dL1(x,x′)

σ2 .

We trained the SVMs for the histogram-based features such as
the color histogram, edge histogram and the color correlogram
with the Laplacian RBF kernel, while the remaining features
were trained with the Gaussian RBF kernel. The Laplacian
RBF kernel was implemented as a user defined kernel in the
employed SVM-light [6] implementation.

The parameters for the SVMs were optimized by conducting
a coarse grid search with 3-fold cross validation.

C. Fusion

The output of the SVM-based classifiers were actually the
distance of the feature vector to the learned hyper-plane. To
avoid the dominance of some outputs, we normalized the
distance scores with a sigmoid function [8]:

Snorm =
1

1 + e−Sraw
.

Where Snorm is the normalized score and Sraw is the raw
score from the SVM classifier.

We only considered the weighted sum rule for combining
the low-level classifiers. In the old system, a global weight was
assigned to each low-level feature, which was not reasonable
because a specific feature classifier may be more suitable for
some categories but not for the others. Thus we assigned

weights for each feature and each category according to the
average precision (AP) score obtained by the experiments
on the validation data. The fused score is then computed as
follows:

Sfusion =
∑N

i=1 wiSi∑N
i=1 wi

.

Where Sfusion is the fusion score, Si is the score to be fused,
wi is the corresponding weight of score Si.

D. Training data

The positive and negative training samples in the develop-
ment data were quite unbalanced. Some categories, such as
the concept “Flag-US” in TRECVID 2007, only contains 12
positive samples while the number of the negative samples is
over 20000. We set the SVM parameter for controlling the cost
margin to the number of negative samples in the training set
divided by the number of positive samples [7]. However, SVM
classifiers with this parameter setting return too few positive
returns which leads to low recall.

To avoid this problem, we down-sampled the negative
samples in the training set, while all the positive samples were
kept. The down-sampling followed the method in [11]. For
a given category, the number of the negative samples was
limited according the number of the positive samples. The
training samples were then not heavily unbalanced for some
categories and less support vectors were generated during the
SVM training, which accelerated both training and evaluation.

To obtain the weights for each low-level classifier and
the parameters for the SVMs, we conducted a 3-fold cross
validation. The development data was split into two partitions,
since the sum rule fusion is not learning-based fusion, we
do not have to split the data to learn the scores. 2/3 of the
stratified training samples were selected for training and the
remaining samples were used as a validation set. However,
all the samples were trained again using the optimized SVM
parameters to provide enough positive training samples.

E. Ranking

Since we got very few positive returns last year, some
negative returns were also added in the ranking list. The length
of the ranking list was set according to the priori ratio of the
positive samples in the development data. This was the major
reason which cause the poor results of the old system. With
down-sampling of the negative samples we got reasonable
number of positive returns in the revised system, and the
ranking lists were limited to 2000 according to the requirement
for evaluation without any other limitations.

IV. EXPERIMENTAL RESULTS

After conducting grid search with 3-fold cross validation,
the parameters for the SVMs were coarsely optimized (with
a coarse step-size because of time limit). The parameter for
trading-off between training error and margin was set to 1.0,
and the parameter gamma (γ) for RBF kernel was set to
0.05. We evaluated the revised system on the 2007 TRECVID
testing data with ground-truth annotation provided by NIST.
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Fig. 1. Interpolated recall-precision. Estimated using 50% sample (e.g.,
estimated precision = 2 * actual from sample)
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Fig. 2. The inferred average precision (infAP) scores for all evaluated
categories. Estimated using 50% sample (e.g., estimated precision = 2 * actual
from sample)

The mean infAP score was 6.3%, which was above the
average. The interpolated recall-precision diagram is shown
in Figure 1 and the infAP scores for all evaluated categories
are plotted in Figure 2. With the priori ratio limitation, the
system got a mean infAP score of 3.9%, which means that
the limitation discarded lots of hits and thus degraded the
performance. The number of the positive samples also plays
an important role for the final performance. For example,
the group NII-ISM (National Institute of Informatics, The
Institute of Statistical Mathematics) [8] used the similar low-
level features and fusion scheme and got similar infAP score
(6.6%) if only the development data of TRECVID 2007 is
used. But the score improved to 10.1% when they trained their
system using more data including TRECVID 2005, 2006 and
2007.

Last year, totally 36 concepts were used for HLF detection
task, while only 20 categories were evaluated. In this year,
however, 20 concepts were selected and all were evaluated
with the same criteria as before. The task was more object
detection oriented and 15 of the 20 features were annotated
with bounding boxes in the key-frames for training. Due to
scarcity of time, we did not build another system to utilize
the object annotation for object detection. We evaluated our
revised system on the data provided for this year and submitted
two runs. However, they were quite similar runs. The second

Run Mean infAP Description
UKA1 3.0% Weighted sum fusion
UKA2 3.8% Weighted sum fusion with unconfidence filtering,

TABLE I
HIGH-LEVEL FEATURE EXTRACTION RESULTS

Concept UKA1 UKA2 Median Max
Classroom 0.001 0.003 0.008 0.152
Bridge 0.006 0.010 0.004 0.117
Emergency Vehicle 0.000 0.000 0.003 0.065
Dog 0.057 0.094 0.101 0.275
Kitchen 0.004 0.009 0.010 0.165
Airplane flying 0.028 0.034 0.029 0.278
Two people 0.032 0.030 0.050 0.174
Bus 0.002 0.001 0.004 0.119
Driver 0.035 0.059 0.046 0.324
Cityscape 0.034 0.053 0.059 0.258
Harbor 0.001 0.005 0.008 0.182
Telephone 0.007 0.006 0.011 0.136
Street 0.055 0.080 0.113 0.413
Demonstration Or Protest 0.001 0.002 0.013 0.233
Hand 0.014 0.020 0.095 0.377
Mountain 0.032 0.037 0.041 0.246
Nighttime 0.129 0.130 0.102 0.323
Boat Ship 0.100 0.113 0.093 0.394
Flower 0.048 0.062 0.058 0.161
Singing 0.025 0.014 0.014 0.258
Mean 0.030 0.038 0.043 0.232

TABLE II
RESULTS FOR EACH CONCEPT

run filtered out some relatively less confident returns. The
results are listed in Table I. The inferred average precisions for
each concept are listed in Table II. The columns UKA1 and
UKA2 list the infAP scores of our two submitted runs. The
median and maximum infAP scores are listed in the fourth and
fifth columns, respectively. Our results are close to median, but
they are still far from the best system.

V. CONCLUSION

Several modifications were made based on the old system
from last year. We evaluated the revised system on the 2007
TRECVID data with ground-truth annotation and the results
were improved. From our experiments and the report from
the other groups, we concluded that training with more data
improves the performance. However, since the evaluation in
this year is more object detection oriented, we should have
utilized the provided object annotations to improve our results
further.
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