KINECT UNBIASED

Manuel Martinez, Rainer Stiefelhagen

Karlsruhe Institute of Technology
Institute for Anthropomatics and Robotics (IAR)
Computer Vision for Human-Computer Interaction Lab
Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe, Germany

ABSTRACT

Since its release, Kinect has been the de facto standard for
low-cost RGB-D sensors. An infrared laser ray shot through
an holographic diffraction grating projects a fixed dot pattern
which is captured using an infrared camera. The pseudo-
random pattern ensures that a simple block matching algo-
rithm suffices to provide reliable depth estimates, allowing a
cost-effective implementation. In this paper, we analyze the
software limitations of Kinect’s method, which allows us to
propose algorithms that provide better precision. First, we
analyze the dot pattern: we measure its pincushion distortion
and its effect on the dot density, which is smaller towards the
edges of the image. Then, we analyze the behavior of Block
Matching algorithms, we show how Kinect’s Block Matching
implementation is; in general; limited by the dot density of
the pattern, and a significant spatial bias is introduced as a
result. We propose an efficient approach to estimate the dis-
parity of each dot, allowing us to produce a point cloud with
better spatial resolution than Block Matching algorithms.

Index Terms— Kinect, RGB-D, pattern, bias

1. INTRODUCTION

Microsoft Kinect needs little introduction. It was the first af-
fordable camera that provided reliable depth maps in indoor
scenarios and it has become widely popular both in consumer
and research areas.

Kinect itself is a combination of three different USB de-
vices: a microphone array, a tilt motor and an RGB-D camera.
The RGB-D device is powered by PrimeSense technology,
which also powers Wavi Xtion family of sensors from ASUS.

Kinect uses a technology called texture projection where
a pattern is projected to the scene in order to simplify the
correspondence problem by providing unique texture patches.
The common approach used in texture projection systems is
to use a standard LCD projector to cast the texture over the
scene and a stereo camera to obtain the disparity map, how-
ever by using a fixed texture, a simpler projection component
can be used as in the PR2 sensor head [1]. One of the simplest
options is to use an infrared(IR) laser coupled with a fiber

Fig. 1: We have developed a simulator that allows us to evalu-
ate Kinect’s algorithms in artificial scenarios. Top left: Depth
ground truth. Top right: Block Matching (BM) depth esti-
mation. Bottom row: accuracy of different BM approaches

on the central 32x32 pixels. Red represents error by ex-
cess, green represents error by defect with blue being neutral.
From left to right: Kinect’s algorithm, OpenCV’s algorithm,
OpenCV’s at 4x resolution. Best viewed in color.

grating device to project a grid of points [2], although inex-
pensive, the resulting dot pattern is regular and narrowly lim-
its the depth range and spatial resolution achievable. Kinect
solved this problem by using a two layered fiber grating with
an holographic structure that projects a pseudo-random dot
pattern [3]. As the projected pattern is fixed and known, a
single infrared camera suffices to triangulate accurately the
texture, providing additional cost savings over stereo camera
systems. Finally, as Block Matching is a hardware friendly
technique [4], Kinect implements it to provide a disparity map
from the IR image. The conversion from disparity to depth is
not performed by the device.

Being a closed system, several groups have analyzed
Kinect from different point of views. From the hardware,
communication and capabilities side the work from Freenect
has been crucial [5]. Several papers have analyzed Kinect and

have compared it against other depth range alternatives [6-9],
those helped to identify the bias that Kinect systems show
against temperature changes. Finally some groups have ana-
lyzed the pattern and the optical characteristics [10]. In our
group, we created a model able to predict the depth map given
a source infrared image taken by the same Kinect [11]. In this
paper we analyze our Kinect model in order to better deter-
mine its limitations and provide better algorithms to generate
the depth map.

We start by analyzing the limitations of the projected dot
pattern. As the IR camera does not obtain any information
from the dark parts of the image, the depth information is
available only from the parts of the scene illuminated by a
dot. Therefore, the dot distribution fixes the actual maximum
spatial resolution achievable by Kinect. Our analysis show
that an circular object must have a radius of 3.25 pixels in
order to be recognized by Kinect.

Then, we analyze the behavior of alternate Block Match-
ing(BM) algorithms on the system Fig. 1. We have imple-
mented a Kinect simulator using the model suggested by [11]
to evaluate depth algorithms. It allows us to simulate artificial
scenarios and thus compare our results to a known ground
truth. We found that although it is possible to improve the
depth resolution with better BM algorithms, the spatial reso-
lution remains poor.

Finally we propose to estimate the depth of each individ-
ual projected dot. This approach allows us to provide a 28K
point cloud, close to the actual resolution limit of the pro-
jected pattern. Although the grid structure is lost, this ap-
proach is be useful to projects that use point cloud informa-
tion in 3D space. The fact that only 28K points are provided
increases the performance of the system with respect to the
original BM algorithm with 300K points.

2. KINECT MODEL

We developed a Kinect simulator based on the model pre-
sented in [11] to analyze the properties of the suggested depth
algorithms. Given a triangle mesh based scene definition,
we use raytracing to simulate the infrared view that Kinect
would perceive. The simulator provides ground truth of the
depth, and simulates the block matching algorithm performed
by Kinect.

First, we obtain the calibration pattern of a Kinect by re-
versing its model:

D(z,y) = arg min|I(z + k,y) — R(z,y)|)
k

where D is the disparity provided by Kinect, [is the IR image
and R is the reference pattern.

R'(z,y) = I(z + D(z,y),y) - 2)

Therefore, if we obtain simultaneously the IR image I and the
disparity field D, we can approximate the reference image R’
by displacing the image from I the amount noted by D.

Although the exact block size used in Kinect is unknown,
results are consistent with a 16x16 block size [11].

From the OpenNI driver, we know that the reference im-
age is a calibration image taken at p = 1200mm from the
camera with a 100 pixel bias. Knowing the focal length fz =
580 (at VGA resolution) and the baseline b = 75mm. And
the disparity is provided at a resolution of 8x of the VGA out-
put, the depth d can be calculated as:

=bx fx
100+ b fa/p— (1/8) x disp

Is it important to notice that Kinect provides depth at
VGA resolution, however internally processes IR images at
SXGA resolution. In this paper we express pixel sizes at
VGA resolution unless otherwise noted.

3)

3. ANALYSIS OF THE DOT PATTERN

To analyze the pattern, we use a HSXGA version of the refer-
ence image to localize and annotate each individual dot with
high precision.

As the pattern shows a strong vignetting effect, Kinect
chooses a brightness setting that causes saturation on the dots
close to the center of the image. It is not possible to alter
the brightness setting, so we apply a Gaussian filtering with
o = 3pzx to allow us to find dots as local maxima. A threshold
based on the mean brightness over its neighborhood is used to
eliminate noise and small sparkles that appear as side effects
of the holographic grating. Finally we use the 3x3 neighbor-
hood around the maxima to estimate its peak with subpixel
precision. A total of 28117 dots are detected.

Assuming a block size of 8x8 pixels (on VGA), we an-
alyze the density of the dots/block, the block bias, and the
resolution (see Fig. 2).

3.1. Dot density

We measure the density of the dots by counting, per each
pixel on the VGA image, how many dots would be included
in its 8x8 neighborhood. The top value is 14, and the min-
imum value is 1, however the mean value is 7.62 +1.23
dots/block on the center of the pattern and drops to 3.07 +
1.18 dots/block at the edges.

3.2. Block bias

We define the block bias as the mean position of the dots
included within a block with respect to the its center. This
measure provides us with an indication of the precision of
the Kinect spatial information. If we approximate the local
neighborhood of a pixel as a flat surface, and the output of
the BM algorithm as the mean disparity of each individual
dot in the block, then the distance reported will be that of the
mean position the dots within the block, which may not be

— 3

¥ 8 Ll B
2 6 B 2 2|
2 =21k g
I B c 1

0 0 : 0

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

100 T T T —~ 40F T T T ~ T T T

S g Y & 4
+ 30| s
v oor T ~
3 40f Vi I
g 20 g 100 g
= 0 L | o O | | | E O

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

Fig. 2: Analysis of the pattern. X axis represents the distance in pixels from the central point of the pattern. The gray corridor
indicates the standard deviation. Block indicates the 8x8 neighborhood used in the Block Matching algorithm. Top left: density
of the dots per block. Bottom left: proportion of blocks that are represented by less than 4 dots. Top middle: spatial bias of
the block. Bottom middle: proportion of blocks with a bias smaller than 0.5 pixels. Top right: minimum radius that a circular
object must have to be illuminated by the pattern. Bottom right: minimum radius that a circular object must have to be detected

by the BM algorithm.

the actual center of the block (i.e. the pixel we are testing).
This is the source of the non-sharp edges present in the depth
field (see Fig. 1). The block bias at the center of the pattern
is 0.64 +0.34 pixels and 1.60 +1.02 pixels at the edges. In
fact, less than 40% of the pixels in the center of the pattern
present a bias smaller than 0.5 pixels, and this number drops
to less than 10% at the edges. This means that, in ideal con-
ditions, most pixels report a disparity value that would have
been better reported by a neighboring pixel.

3.3. Resolution

As the pattern is non uniform, we define its spatial resolution
as the capability to detect a circular feature in the scene.

First we would test an ideal scenario: we assume that we
have an oracle that allows us to perfectly solve the correspon-
dence problem and, in consequence, our circular test object
only requires to be be illuminated by a single dot of the pat-
tern to be detected. For each pixel, the distance to its closest
dot will indicate the minimum detectable radius, and ranges
from 1.18 £0.50 to 1.98 +0.89 pixels.

However, if an object is in front of a background of similar
albedo, it must cover more than half of the dots of a block
to be detected. In this case, the dot density plays a smaller
role, and the minimum detectable radius for a circular object
is fairly constant (from 3.24 40.44 to 3.38 £0.75 pixels).

4. BLOCK MATCHING ALGORITHMS

Kinect’s Block Matching algorithm uses a fixed point resolu-
tion corresponding to 1/8th of a VGA pixel.

As the IR image can be captured at a SXGA, we have eval-
uated floating point block matching algorithms directly ap-
plied to the higher resolution IR image expecting better depth
resolution.

We have evaluated Konolige’s optimized BM implemen-
tations from OpenCV [12], first on SXGA resolution and later
on QSXGA (2x2 SXGA).

SXGA takes 220ms to process an image and obtains a
similar performance that of Kinect’s algorithm, while BM
on QSXGA takes more than 12 seconds to process a sin-
gle image although obtains a significantly better performance
(see Fig. 3).

1072
T
/;<\ 4+ . .
N
=
e 3
E 2 . - . IO‘ ‘...“..‘_---’-,
g bt~ ~.— . ’ . '.
Q LI
=
0 | | | | |
—-40 -20 0 20 40

test angle (degrees)

Fig. 3: Mean disparity error on the central part of a tilted
plane in pixels. Solid: Kinect’s algorithm. Dotted: BM at
SXGA resolution. Dash-dotted: BM at QSXGA resolution.

Fig. 4: Our dot-based algorithm provides a sparse 3D point cloud (right) from the IR image (left). Each dot in the projected
pattern produces a 3D point.

5. DOT-BASED POINT CLOUD

We have already discussed how Kinect can only obtain depth
information from the dots of the projected pattern. Ideally,
a system that assigned a disparity value to each visible dot
would be optimal, however the problem is hard as the dots
are indistinguishable between them.

We suggest to use a simple BM algorithm to solve the
correspondence problem. This provides us a gross estimate
of the pattern dots’ position within the IR image, which will
be refined.

As a prerequisite, we localize with precision the dots from
the reference image and create a table that lists, for each pixel
of the reference image, all the dots in its 8x8 neighborhood.

The online algorithm is as follows:

1. Apply BM between the IR and the reference image.

2. For each IR pixel (i,j) with disparity d, calculate its
counterpart on the reference image R’'(i,j + d), and
add d as a possible disparity to all pattern dots in its
8x8 neighborhood.

3. For each dot in the pattern, cluster all disparity candi-
dates (mean-shift 0 = 1). Each disparity candidate is
projected back to the IR image and the brightest one is
selected.

Unlike Kinect’s, this algorithm does not output a regular
grid. Instead it provides a 3D point cloud where the z coor-
dinate is calculated from the disparity between a known dot
in the pattern and its localization in the IR image. Then the x
and y coordinates are calculated from the localization of the
dot in the IR image and its depth.

We have evaluated this algorithm on synthetic and realis-
tic scenarios (see Fig. 4) and found a performance of around
1.75 frames per second'. In our C++ implementation, the

I Intel(R) i5 760 @ 2.80GHz. Code available at:
http://cvhci.anthropomatik.kit.edu/~manel/kinect

BM has a fixed cost of 290ms, pixel processing takes SOms,
mean-shift clustering 220ms and the final sub-pixel estima-
tion 100ms. However the algorithm has ample margin for
parallelization and could be implemented in a GPU for in-
creased performance.

This algorithm achieves better depth precision than block
matching algorithms (see Fig. 5).

=~
LI
.
’
.

\)
T
[}

mean error (px)
]

0 | | | |
—-40 -20 0 20 40

test angle (degrees)

Fig. 5: Mean disparity error on the central part of a tilted
plane. Solid: our proposed algorithm. Dotted: BM at SXGA.

6. CONCLUSIONS AND FUTURE WORK

We have analyzed Kinect’s Block Matching algorithm quanti-
fying important characteristics such as the minimum size of a
detectable feature, and the spatial bias induced by the unbal-
anced distribution of dots within a block. Using this analysis
we propose a better Block Matching algorithm that improves
depth precision. However, Block Matching algorithms pro-
vide blurred depth maps and do not compensate for the spatial
bias. Therefore, we have proposed an efficient method to pro-
vide a sparse point cloud by estimating the disparity of each
individual dot in the projected pattern. This method avoids
unnecessary interpolation, therefore it provides an unbiased
point cloud with higher spatial resolution than the original al-
gorithm using only one tenth of the 3d points.

(1]

(2]

(3]

(4]

(5]

(6]

7. REFERENCES

Kurt Konolige, “Projected texture stereo,” in Interna-
tional Conference on Robotics and Automation, 2010.

H. Aoki, Y. Takemura, K. Mimura, and M. Naka-
jima, “Development of non-restrictive sensing system
for sleeping person using fiber grating vision sensor,” in
Micromechatronics and Human Science, 2001.

AZT, “Kinect pattern uncovered,” azttm.wordpress.
com/2011/04/03/kinect-pattern-uncovered/, 2011, [On-
line; accessed 15-February-2014].

Dan Strother, “Fpga stereo vision project,” danstrother.
com/2011/01/24/fpga-stereo-vision-project, 2011, [On-
line; accessed 15-February-2014].

Hector Martin Cantero et Al., “the openkinect project,”
openkinect.org, 2010, [Online; accessed 15-February-
2014].

Jae-Han Park, Yong-Deuk Shin, Ji-Hun Bae, and Moon-
Hong Baeg, “Spatial uncertainty model for visual fea-
tures using a kinect sensor,” Sensors, 2012.

(7]

[9]

(10]

(11]

[12]

Kourosh Khoshelham and Sander Oude Elberink, “Ac-
curacy and resolution of kinect depth data for indoor
mapping applications,” Sensors, 2012.

David Fiedler and Heinrich Miiller, “Impact of thermal
and environmental conditions on the kinect sensor,” In-
ternational Workshop on Depth Image Analysis at the
21st International Conference on Pattern Recognition,
2012.

M.R. Andersen, T. Jensen, P. Lisouski, A.K. Mortensen,
M.K. Hansen, T. Gregersen, and Ahrendt P., “Kinect
depth sensor evaluation for computer vision applica-
tions,” 2012, Technical Report.

Kurt Konolige and Patrick Mihelich, “Technical
description of kinect calibration,” www.ros.org/wiki/
kinect_calibration/technical, 2010, [Online; accessed
15-February-2014].

Manuel Martinez and Rainer Stiefelhagen, “Kinect
unleashed: Getting control over high resolution depth
maps,” in MVA, 2013.

G. Bradski, “The opencyv library,” in Dr. Dobb’s Journal
of Software Tools, 2000.

