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Abstract

Pictorial structures provide a powerful framework for
human pose estimation, in particular in the domain of
2D data. However, solving pictorial structures directly
in 3D drastically increases its complexity and it quickly
exceeds tractable dimensions. In this paper, we propose
a discretization-by-segmentation approach by applying su-
pervoxels to 3D pictorial structures which significantly re-
duces the search space. The proposed 3D pictorial struc-
tures approach achieves 3D errors of 115 mm and 135 mm
on the HumanEva-I and UMPM datasets and PCP scores of
78% and 75%, respectively. Due to the search space reduc-
tion, the overall pose estimation runtime is below 100 ms
which is up to four orders of magnitude faster than compa-
rable 3D pictorial structure approaches. The presented ap-
proach is not limited to human pose estimation, but provides
a general and efficient solution for 3D pictorial structures.

1. Introduction
Human pose estimation is the problem of determining

all free parameters of a body model. In particular for hu-
man pose estimation, the number of parameters is very large
and degrees of freedom of 30 and more are quite common.
This results in a huge search space with a large number of
possible poses. Consequently, each pose estimation algo-
rithm requires an efficient strategy to cope with this large
search space. In this work, we will discuss such strategies
and show how supervoxels can be used to reduce the search
space to tractable dimensions.

One particular framework for pose estimation are picto-
rial structures which proved to be very useful for 2D pose
estimation. In 3D, however, pictorial structures are more
difficult to apply. The additional dimension affects all free
parameters and significantly increases its complexity and
search space. In this work, we apply supervoxels to pic-
torial structures to allow for 3D pose estimation in under
100 ms. To the best of our knowledge, this makes it the
most efficient 3D pictorial structures approach.

2. Related Work
In this section, we discuss related pose estimation ap-

proaches with a focus on strategies to cope with the large
search space as well as pictorial structures. In addition, we
explain the concept of supervoxels and their advantages.

2.1. Pose Estimation

Human pose estimation is a very active field of computer
vision as it allows for many commercial and scientific ap-
plications, for example surveillance, motion analysis, and
human-computer interaction, to name just a few. There ex-
ist several extensive reviews, for example Moeslund and
Granum [19], Moeslund et al. [20], Poppe [23], and Holte
et al. [13]. Here, we concentrate on 3D human pose estima-
tion with a focus on strategies to efficiently address the large
search space. In particular, we would like to discuss three
specific strategies: tracking, detection, and discretization.

Tracking approaches use the continuity of movements to
reduce the search space. By estimating where a moving
body part is likely to be in the next observation, the search
can concentrate around this location. Various tracking al-
gorithms exist, for example Kalman filters [14] or particle
filters [6, 7]. The main drawback of tracking is that it re-
quires initialization. In addition, in case of tracking failure,
a recovery mechanism is necessary for reinitialization.

Detection-based approaches learn part detectors, e.g.,
for the head or hands, and apply them to the observation.
Then, the search space for body parts can be reduced to
areas where the respective detectors determined a high like-
lihood. Detection-based approaches showed excellent re-
sults [28, 31]. However, there are two main drawbacks.
First, they require a large set of training data. For exam-
ple, Shotton et al. [28] used approximately 300,000 labeled
training images. Second, the training data introduces a bias.
In case of [28], a rotation of the camera is sufficient for the
part detectors to fail.

The last strategy that we discuss is discretization. Here,
the search space is discretized into fixed intervals. This
could, for example, be a grid with respect to positions or
fixed angle intervals with respect to joint angles. Discretiza-
tion is very effective [5], but also suboptimal as it ignores



the underlying data. This leads to two main drawbacks.
First, discretization intervals are sampled irrespective of the
data and can therefore be outside the currently observed
body volume. Second, these intervals are fixed and do not
adjust to the data. This means that the true position of a
body part can be exactly between two search intervals.

In this work, we present an approach that improves
over current discretization solutions. We propose to use
discretization-by-segmentation as preprocessing. By seg-
menting the voxels into supervoxels, the number of input
elements (i.e., voxels) is significantly reduced while still
conforming to the observed data.

2.2. Pictorial Structures

Pictorial structures have been proposed by Fischler and
Elschlager [11]. A pictorial structure is a simplified way to
describe an object. It consists of two elements: atomic ob-
ject parts and connections between these parts. An efficient
solution for pictorial structures was proposed by Felzen-
szwalb and Huttenlocher [9]. They showed how pictorial
structures can be computed efficiently with dynamic pro-
gramming if the representation has no cycles and showed
applications to 2D face detection and human pose estima-
tion.

Pictorial structures are well-suited for 2D human pose
estimation ([2, 4, 10]). For 3D human pose estimation,
however, the search space quickly exceeds tractable dimen-
sions [5]. One of the few approaches that solves picto-
rial structures in 3D was proposed by Burenius et al. [5].
They showed how the 3D search space can be reduced by
discretization and they achieved runtimes between 1 s and
69 min for each frame. In this paper, we show how super-
voxels provide a better discretization for 3D pictorial struc-
tures with runtimes well below 100 ms.

2.3. Supervoxels

Supervoxels are the continuation of superpixels in 3D.
The concept of superpixel segmentation was introduced by
Ren and Malik [34]. A superpixel describes a connected
region of similar pixels that are close together. Superpixels
have become quite popular and there exist a large variety of
superpixel algorithms, for example [1, 16, 18, 27, 33]. The
reason is that superpixels effectively cluster similar pixels
while still conforming to object boundaries. Therefore, they
are well suited to be used as atomic primitives in applica-
tions instead of pixels. As one superpixel usually consists
of hundreds of pixels, this leads to a significant reduction of
the number of input elements, often in the range of several
orders of magnitude.

Supervoxels apply the concept of superpixels to 3D data.
3D data can either be created by stacking images, for ex-
ample video frames [33, 35] or medical scans [3, 17], or by
using real 3D data [22]. In this work, we are mostly inter-

ested in volumetric 3D data from multi-view voxel carving.
However, it can also be applied to non-volumetric 3D point
clouds, e.g., based on stereo or RGB+D sensors.

One of the few supervoxel approaches for 3D data was
proposed by Papon et al. [22]. In this work, we use an algo-
rithm based on [25], but extended to 3D data, that provides
similar results. However, it is very important to note that the
pose estimation algorithm presented here does not depend
on a specific supervoxel algorithm, as it does not make as-
sumptions about the segmentation. This also implies that
our approach directly benefits from future supervoxel algo-
rithms with better segmentation performance.

In summary, supervoxels cluster similar voxels that are
close together. Therefore, they adjust to the data and pro-
vide a data-dependent discretization. Similar to superpixels,
the number of data elements, the voxels, is significantly re-
duced. As we will show in the remainder of this paper, this
discretization-by-segmentation as well as how we apply su-
pervoxels to pose estimation leads to a low computational
complexity and low runtime.

3. Human Pose Estimation with Supervoxels

This section explains how we apply supervoxels to the
pictorial structures framework. The key idea of the pro-
posed algorithm, partially motivated by [21], is to restrict
joints of the human body model to supervoxel centers. This
assumption significantly reduces the search space because
the number of supervoxels is much smaller than the number
of voxels or 3D points. And because supervoxels conform
to the observed 3D data, they still provide an adequate rep-
resentation. As we will show in Section 5, this leads to a
reduction of several orders of magnitude.

3.1. Improved Discretization with Supervoxels

Discretization typically partitions the search space and
uses fixed step sizes. This is data agnostic and, therefore,
suboptimal. For example, with 10◦ joint angle intervals,
there would be 36 search intervals independent of the ac-
tual data. In the worst case, positions are sampled where
actually no supporting data exists. A discretization based
on the data would be much better.

Supervoxels provide such an improved discretization.
First, supervoxels cluster similar voxels that are close to-
gether. Therefore, they are likely to belong only to one
body part which increases accuracy. Second, supervoxels
exist only where actual observations exist. Therefore, ev-
ery supervoxel is a valid candidate and it cannot occur that
positions outside the human body are chosen. Restricting
joints to supervoxels centers has an additional advantage:
the number of body part candidates is also reduced as will
be explained in the context of the supervoxel graph.



(a) Weighted supervoxel
graph

(b) Anthropometric ratios

Figure 1. Supervoxel graph and body model. (a) shows an ex-
ample of the supervoxel graph with lighter connections having a
higher weight. (b) shows the anthropometric ratios used in this
work (based on [8] cited by [12]).

3.2. Supervoxel Graph

By restricting joints to supervoxel centers, it then follows
that potential candidates for body parts are restricted to con-
nections between supervoxel centers. These connections
can be represented by the supervoxel graph G = (S, E)
with supervoxels s ∈ S and edges e ∈ E. The supervoxel
graph is different from an adjacency graph [22] that only
connects neighboring supervoxels, as it includes all possi-
ble connections betweens supervoxels. An example of a
supervoxel graph is shown in Figure 1a.

In case of volumetric voxel data, as is the case in this
paper, the connections can be weighted by the fraction they
lie within the segmented voxel volume. This actually re-
sembles limbs that are also within the body and is useful to
reduce the overall number of limb candidates as connections
outside the segmented volume can be filtered out. In case
of 3D point clouds, a similar behavior can be achieved by
checking if 3D points are sufficiently close to a supervoxel
connection. In both cases, this can be efficiently evaluated
by using kd-trees or by a direct lookup in the voxel grid
cells.

This concludes the preprocessing that provides a super-
voxel segmentation and its corresponding supervoxel graph.
The next section will show how these can be applied to pic-
torial structures.

4. 3D Pictorial Structures with Supervoxels
Pictorial structures describe an object with its atomic

parts and connections between them [9, 11]. In this work,
we model the human body with twelve body parts, ten con-
necting joints, and five end joints. The body model is shown
in Figure 1b.

Following Felzenszwalb and Huttenlocher [9], pose es-
timation can follow a Bayesian formulation and therefore
be expressed as an energy minimization problem. Let θ
be the body model and let L be a specific configuration of
the N body parts l1, l2, · · · , lN . Let the unary term mi,
1 ≤ i ≤ N , be the energy of body part i and let the bi-
nary term dij give the energy of the connection between two
body parts. Then, the optimal configuration L∗ minimizes
the following energy function:

L∗ = argmin
L

( N∑
i

mi(li) +
∑

(i,j)∈θ

dij(li, lj)
)
. (1)

Given this energy function, we will now show how the
unary and binary energy terms are computed. The unary
term mi, or data term, measures how well a body part can-
didate matches the expected appearance. Because we work
in the domain of 3D data, we use anthropometric ratios
from [8] cited by [12] (Figure 1b) to compute expected limb
lengths given the overall body height. The expected lengths
are then compared to connections of the supervoxel graph.
Let ||li|| be the length of body part candidate li and let ||l̂i||
be the expected length of body part i. Then, the unary en-
ergy term is given by

mi(li) =

∣∣||li|| − ||l̂i||∣∣
||l̂i||

. (2)

The binary energy term consists of two separate terms
that are combined. The first term enforces that two body
parts i and j can only be connected if and only if they share
the same supervoxel as connecting joint cij . This term ac-
tually reduces the complexity as not all pairs of limbs must
be compared, but only limbs that share a connecting super-
voxel:

dsij(li, lj) =

{
0 if cij(lj) = cij(li)

∞ otherwise
. (3)

The second binary energy term is more specific to the
volumetric voxel data used in this work. As volumeless
skeletons can be fit very tightly into volumes, we prefer
extended limbs. This heuristic pose prior works well for
volumes as it ensures that the given volume is completely
filled. Let gij give the distance between the end joints of
two connected limbs i and j (e.g., shoulder and hand in case



of upper and lower arm) and let ĝij give the expected dis-
tance if they are fully extended. The second binary energy
term is then given by

deij(li, lj) =
1

gij(li,lj)
ĝij(li,lj)

=
ĝij(li, lj)

gij(li, lj)
. (4)

As stated above, this energy term is specific for volu-
metric data. Depending on the task at hand, there are two
alternatives. First, the pose prior can be learned from train-
ing data. We investigated this solution but found no im-
provement for volumetric data. Second, by introducing part
detectors, the most likely joint positions can be additionally
modeled in the unary energy term. This would provide an-
chors for the joints, thus alleviating the need for this pose
prior.

4.1. Efficient Estimation of Human Poses

Felzenszwalb and Huttenlocher [9] showed that picto-
rial structures can be solved efficiently if the object is rep-
resented by a tree. This is the case for the human body
model (Figure 1b). One way to efficiently estimate the pose
is through dynamic programming. Here, we use the min-
sum algorithm as was also done by Burenius et al. [5].

Algorithm 1 Min-sum pose estimation with supervoxels
1: Input: supervoxel graph G = (S, E)
2: Input: number of pose candidates P
3: Output: pose configurations L∗1, · · · , L∗P
4: Define p(i): return parent node of body part i
5: // Initialization
6: ∀l ∈ E ∀n ∈ {1, · · · , N} : initialize part scores
mn(ln)

7: // Passing messages upwards
8: for n := N to 2 do
9: for lp(n) ∈ E do

10: m := min
ln

(dsn,p(a)(ln, lp(n)) +mn(ln))

11: mp(n) := mp(n) +m
12: end for
13: end for
14: // Passing messages downwards
15: for i := 1 to P do
16: l∗1 := argmin

l1

(m1(l1))

17: L∗i (1) := l∗1
18: for n := 2 to N do
19: l∗n := argmin

ln

(den(ln, L
∗) +mn(ln))

20: L∗i (n) := l∗n
21: end for
22: end for

After initializing each connection of the supervoxel
graph with the unary energies of each body part, the fi-

nal pose is computed through two message passing phases.
First, the unary terms are propagated upwards the kinematic
chain while also including the respective connections be-
tween body parts. Then, the best torso candidate is selected
and messages are passed downwards to select the best body
parts given the selected torso. Algorithm 1 shows pseudo
code for this procedure.

As explained above, we use a second energy term to pre-
fer connections that fill the available volume. This term is
only used during the second part of Algorithm 1. There-
fore, the min-sum algorithm becomes a greedy algorithm.
For best results, we sample additional poses by choosing
the n best torso candidates at the beginning of the second
part. As we will discuss in Section 5, pose candidates can
be efficiently evaluated and the best solution is found with
only a small set of samples.

This concludes the introduction of the 3D pictorial struc-
tures approach with supervoxels. Additional information
can be found in [24]. The next section shows the evaluation
and a discussion of the parameters.

5. Evaluation
This section presents the evaluation of the proposed 3D

pictorial structures algorithm with supervoxels. First, the
datasets and error metrics are introduced. Then, variations
of the parameters are shown followed by a final evaluation
with the best parameters including comparisons to other
work. The section is concluded with a complexity and run-
time evaluation.

For all experiments, an Intel Pentium Intel(R) Core(TM)
i7-3770 CPU with 3.40 GHz was used. GPU code was im-
plemented with NVIDIA Cuda and executed on a NVIDIA
GeForce GTX 660 Ti.

5.1. Datasets and Metrics

We used two datasets for evaluation. The HumanEva-I
(HE-I) dataset introduced by Sigal and Black [30] and Sigal
et al. [29] and the Utrecht Multi-Person Motion (UMPM)
benchmark introduced by Van der Aa et al. [32]. Both
datasets provide multiple views of calibrated cameras that
are required for voxel carving. Ground truth was measured
with Vicon systems. While HE-I shows only action se-
quences, UMPM also includes interactions with large ob-
jects like chairs and tables. We used all five action se-
quences of actors S1 and S2 of the HE-I dataset and all five
sequences showing only one actor of the UMPM dataset. In
total, more than 12, 500 frames were used.

For evaluation, we applied two error metrics: The first
metric is the relative 3D joint localization error (Sigal et
al. [29], Equation 6) that measures the average distance of
estimated joint positions to the ground truth in millimeters.
The second metric, percentage of correct parts (PCP) [10],
measures the fraction of correctly estimated parts over the



(a) S1 ThrowCatch sequence, voxel size: 2 cm, supervoxel size: 10 cm

(b) Table sequence, voxel size: 2 cm, supervoxel size: 10 cm, synthetic voxels

Figure 2. Qualitative pose estimation results for the HumanEva-I and UMPM datasets for various voxel and supervoxel sizes.

whole sequence. A part is counted as correctly estimated
if and only if both joints are within a distance of at most
half the limb length. This metric is often used for 2D pic-
torial structures approaches and we use it here for a better
comparison to future work with 3D pictorial structures.

5.2. Parameter Evaluation

The presented approach has three main stages: voxel
carving, supervoxel segmentation, and pose estimation.
Here, we focus on the last stage. For voxel carving, we used
the algorithm presented by Schick and Stiefelhagen [26]
that provides a mechanism to reason with static occlusions
which is necessary for the UMPM dataset. For supervoxel
segmentation, we adapted the approach presented in [25] to
3D voxel data. The supervoxels were used with a compact-
ness parameter of α = 1.0 [25] as the voxels are colorless.

The whole approach requires few parameters and their
influence on pose estimation will now be evaluated. The
parameters are the number of pose hypotheses (Section 4.1),
voxel and supervoxel sizes, and supervoxel graph weight
thresholds (Section 3.2).

Figure 3 shows variations of the number of pose hy-
potheses for different voxel and supervoxel sizes. The
results stabilize quickly at approximately 50 hypotheses
which shows that the greedy version of the min-sum algo-
rithm requires only few sampled poses for best results. This
number of hypotheses is used for the remaining evaluations.
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Figure 3. Evaluation of the number of pose hypotheses for the HE-
I and UMPM datasets.

Figure 4 shows evaluations of various voxel sizes and
three supervoxel sizes. While the voxel size has only a small
impact on overall PCP results, the supervoxels are the de-
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Figure 4. Evaluation of voxel and supervoxel sizes for the HE-I
and UMPM datasets.

termining factor. This shows that supervoxels abstract very
well from the underlying voxel data. It also implies that fu-
ture supervoxel algorithms with better performance will di-
rectly improve pose estimation without any modification of
our proposed algorithm. If not specified otherwise, a voxel
size of 2 cm and supervoxel size of 10 cm will be used in
subsequent evaluations.

Figure 5 shows results for varying supervoxel graph
weights. For HE-I, results are best with a very strict weight
of 1.0 which means that there is no tolerance for connec-
tions outside the segmented volume. For UMPM, best re-
sults are achieved with a connection weight threshold of
0.95. The reason is that there are more voxel carving er-
rors for UMPM due to static occlusions. In the remainder
of the evaluation, the thresholds are 1.0 for HE-I and 0.95
for UMPM.

5.3. Evaluation with Optimal Parameters

The final evaluation presents both 3D error and PCP re-
sults for three voxel and supervoxel sizes with 50 pose hy-
potheses and connection weights of 1.0 and 0.95, respec-
tively. First, results on synthetic data are shown. Synthetic
data consists of voxels sampled around the ground truth
body parts and is used to verify that the approach works
correctly given good voxel data. Second, results with voxel
carving are presented (as was done in Section 5.2). These
include voxel carving errors due to difficult foreground seg-
mentations for the HE-I and static occlusions for the UMPM
dataset.

Table 5.3 shows PCP results for synthetic voxel data for
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Figure 5. Evaluation of supervoxel graph connection weights for
the HE-I and UMPM datasets.

Voxel: 2 cm Voxel: 3 cm Voxel: 4 cm
Dataset SV: 10 cm SV: 15 cm SV: 20 cm
HE-I (syn) 96 92 86
HE-I (real) 78 71 60

UMPM (syn) 98 95 89
UMPM (real) 75 66 60

Table 1. PCP results for pose estimation with both synthetic as well
as voxel carving data on the HumanEva-I and UMPM datasets.
The table shows results for three voxel and supervoxel resolutions.

Voxel: 2 cm Voxel: 3 cm Voxel: 4 cm
SV: 10 cm SV: 15 cm SV: 20 cm

Dataset [mm] [mm] [mm]

HE-I 115 139 181

UMPM 135 167 185

Table 2. 3D joint localization error for pose estimation based on
voxel carving data for the HumanEva-I (HE) and UMPM datasets.
The table shows results for three voxel and supervoxel resolutions.

both datasets. Even for rather large voxels and supervoxels,
the PCP results are close to 90%. For smaller voxels and
supervoxels, the results are close to 100%. Table 5.3 also
includes PCP results for both datasets on voxel carving data.
While the results are worse due to imperfect voxel carving,
they show recognition rates of 78% and 75%.

Table 5.3 shows 3D errors for both datasets over all
frames. As expected, the errors increase for larger voxels



and supervoxels. For the smallest resolutions (10 cm su-
pervoxels), results are 115 mm for HE-I and 135 mm for
UMPM.

5.4. Comparison to Related Work

A comparison of PCP results is difficult as this metric is
mostly used for pictorial structures approaches in 2D. How-
ever, PCP results were reported by Burenius et al. [5]. Their
approach is closest to our algorithm as they also solve pic-
torial structures in 3D. They reported PCP results of up to
77%, but on a custom dataset. These results, however, are
in the same range as our reported results in Section 5.3.

Most 3D approaches evaluate the 3D error. Canton-
Ferrer et al. [6] proposed an annealed particle filter based
on voxel data with a resolution of 2 cm (as in this work)
and evaluated on the HE-I dataset. Their approach is
computationally very expensive as 3, 600 hypotheses must
be tracked simultaneously. They report 3D errors of
121.18 mm.

Amin et al. [2] proposed an approach that computes 2D
poses with pictorial structures on multiple camera images
that are then triangulated in 3D. They achieve among the
best 3D errors and report results between 44.7 mm and
62.4 mm. However, their approach requires separate com-
putations of multiple 2D pictorial structures which is com-
putationally expensive.

Kanaujia et al. [15] used part detectors similar to Shotton
et al. [28], but trained them on voxel data. They evaluated
their system on various sequences of the HE-I dataset and
achieved 3D errors between 71.261 mm and 90.952 mm.

3D errors for the UMPM dataset cannot be compared as
there are no reported results for similar approaches available
yet.

5.5. Runtime and Complexity Analysis

The evaluation in Table 5.5 shows runtimes for all steps
of our approach. The runtimes are reported for the GPU im-
plementations. The pose estimation runtimes are 91 ms for
the smallest voxel and supervoxel resolutions and decrease
rapidly for larger ones.

In comparison, the approach of Burenius et al. [5], which
is closest to our approach as it also solves pictorial struc-
tures in 3D, requires runtimes between 1 s and 69 min de-
pending on the discretization parameters. This means that
our approach is up to four orders of magnitude faster. The
other approaches discussed above did not report any run-
times for comparison.

The complexity of the proposed 3D pictorial structures
algorithm depends on the number of supervoxels. Let N =
|S| be the number of supervoxels. Each connection between
supervoxels is a potential body part candidate leading toN2

body part candidates in the worst case.

SV size: 10 cm SV size: 15 cm
Algorithm part [ms] [ms]

Voxel carving 18 6
Supervoxels 12 10

Supervoxel graph 1 < 1
Pose estimation 91 14

Total 122 30

Table 3. Runtimes for all steps of the presented pose estimation
system for the GPU implementation.

The min-sum algorithm consists of an initialization and
two phases, up and down. The time complexity for ini-
tialization is in O(N2) as each supervoxel graph connec-
tion must be initialized. The up phase is the computation-
ally most complex part as each pair of connections must
be combined. However, this does not lead to a complexity
in O(N4) but only O(N3) because both connections must
share the same connecting supervoxel. The down phase is
the least expensive part after the torso has been selected.
Then, each selected body part is determined by its end joint
as the connecting joint has already been selected, thus lead-
ing to a complexity in O(N). This is also the reason why
sampling multiple poses is computationally efficient. In
conclusion, the time complexity is determined by the up
phase and is inO(N3). The space complexity is in the num-
ber of body parts and, therefore, in O(N2).

6. Conclusion
This concludes our presentation of 3D pictorial struc-

tures for human pose estimation with supervoxels. We
showed how supervoxels can be applied to pictorial struc-
tures to efficiently estimate the human pose. An evaluation
on two datasets showed comparable performance in terms
of 3D joint localization error and PCP results. The com-
putational efficiency exceeds comparable approaches by up
to four orders of magnitude. The presented approach is not
limited to human pose estimation, but provides a general
and efficient solution for 3D pictorial structures.
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